Advanced Enabling High-Speed Technologies
ID: HR0011SB20244-01Type: BOTH
Overview

Topic

Advanced Enabling High-Speed Technologies

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Oct 3, 2023 12:00 AM
  2. 2
    Open Oct 3, 2023 12:00 AM
  3. 3
    Next Submission Due Mar 31, 2025 12:00 AM
  4. 4
    Close Mar 31, 2025 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" as part of the SBIR program. The research focuses on advancements in additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. The objective is to deliver combat power and lethality by achieving responsiveness, intensity, and the ability to deliver munitions at range. The technology sought includes propulsion solutions using high-density, storable, and rapidly loadable propellants, as well as advancements in understanding and characterizing novel fluid dynamics for enhanced propulsion performance. The solicitation is open for Phase II proposals only, and proposers must demonstrate feasibility and potential military or commercial applications. The Phase II effort consists of a base period of 12 months and an option period of 12 months. The ultimate goal is to transition and commercialize the developed technologies for both military and commercial applications, particularly in the areas of manned or unmanned air and space platforms.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" in their SBIR 24.4 Annual solicitation. The Defense Advanced Research Projects Agency (DARPA) is specifically interested in technologies related to additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. They are also looking for advancements in the understanding and characterization of novel fluid dynamics that enhance propulsion performance. The objective is to achieve coherence between a cooperating set of commodity devices, resulting in increased thrust to weight, fuel efficiencies, and propellant mass fractions. This solicitation is open for Phase II proposals only, and Phase I proposals will not be accepted or reviewed. Phase II will involve designing and evaluating enabling technologies at the system and subsystem level, as well as advancing modeling and simulation tools. Physical hardware proposals should include development, installation, integration, demonstration, and/or test and evaluation of the proposed prototype system. Software or advanced tool development proposals should have a development approach anchored in the physics of the problem and ways to validate the software against existing test data. The Phase II effort consists of a base period of 12 months and an option period of 12 months. Phase III of this project will focus on transition and commercialization of the developed technologies. The proposer is required to obtain funding from private sector or non-SBIR Government sources to develop the prototype software into a viable product or non-R&D service for sale in military or private sector markets. The technologies developed under this topic will have applications in both commercial and military sectors, including commercial transportation, high-speed delivery, and responsiveness to fluidic environments. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.4 Annual topic page on the SBIR website (https://www.sbir.gov/node/2492697). The solicitation is currently open, and the application due date is March 31, 2025.
DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of the SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The system could have broad military applications where rapid iteration and production are needed, and it may be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page.
DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The potential impacts of this research include enabling rapid and iterative manufacturing processes for a broad range of military applications. The advanced manufacturing and modular design will be critical to all services where rapid iteration and production are needed. The system could be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page on the Defense SBIR/STTR website.
DOD SBIR 24.4 Annual - Automated Functional Grading of Materials for Directed Energy Deposition Additive Manufacturing
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of software for automated functional grading of materials in directed energy deposition additive manufacturing. This research topic aims to enable the production of complex, multi-material munitions with enhanced lethality. The software should allow for the creation of functionally graded materials (FGMs) by generating tool paths for multi-material grading in at least three directions. The software should be capable of accepting user inputted gradients for combinations of at least four metals simultaneously. In Phase I, a proof-of-concept software should be developed to print FGMs on a directed energy deposition additive manufacturing printer. The software should be able to accept user-generated gradients and demonstrate control over changing the mixing of metals. Materials characterization should be performed to verify the chemistry of the deposited gradient. In Phase II, the software should be expanded into a prototype capability, allowing for user-defined material grading using up to four metals simultaneously. Graded test coupons should be fabricated in multiple orientations, and a demonstration part containing a functionally graded material should be generated. Materials characterization should be performed for each coupon. The development of this software will greatly increase manufacturing capability and potentially help increase widespread adoption of directed energy deposition additive manufacturing technology. The military and civilian sectors, including manufacturing research, aerospace, mining, power, tool manufacturing, and medical applications, would benefit from this technology. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2651311).
DOD SBIR 24.4 Annual - High Power and Torque Electric Motors for Direct-Drive Rotorcraft Applications
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of high power and torque electric motors for direct-drive rotorcraft applications. The objective is to identify and design an electric motor architecture that can provide high power and torque output at low rotational speeds suitable for rotorcraft applications. The proposed motor should be capable of delivering power in the range of 400-700+ horsepower at rotational speeds of 250-400 RPM, with torque ranging from 5,000-15,000+ ft-lb. The motor should also exhibit high torque densities in both continuous and short-term hover operations. The development of such motors is crucial for the advancement of electric aviation and would have immediate applications in light rotary-wing designs, eVTOL unmanned aircraft systems (UAS), and logistics operations. The project will involve a phased approach, starting with a feasibility analysis and conceptual design in Phase I, followed by detailed design and prototype development in Phase II. Phase III will focus on the integration and testing of the motor in a relevant aerospace application. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities website.