Hypersonic Kill Vehicle Range Extension Research
ID: MDA24B-T002Type: Phase I
Overview

Topic

Hypersonic Kill Vehicle Range Extension Research

Agency

Department of DefenseN/A

Program

Type: STTRPhase: Phase IYear: 2024
Timeline
  1. 1
    Release Apr 17, 2024 12:00 AM
  2. 2
    Open May 15, 2024 12:00 AM
  3. 3
    Next Submission Due Jun 12, 2024 12:00 AM
  4. 4
    Close Jun 12, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the Small Business Innovation Research (SBIR) Phase I program. The specific topic of the solicitation is "Hypersonic Kill Vehicle Range Extension Research" and is being conducted by the Missile Defense Agency. The objective of the research is to enhance the range performance of hypersonic vehicles by utilizing in-flight shape, configuration, or control surface changes that optimize aerodynamics, control, or propulsion properties. The research will focus on improving aerodynamic performance to achieve better maneuverability and overall weapon system performance.

In Phase I, the selected proposals will develop and execute a first-principles research approach to optimize lift-to-drag methods, vehicle control geometries, and identify materials for high temperatures and mechanical strain. The research will also explore high bandwidth vehicle control mechanisms and flight control algorithms. Digital models will be used to gain insights into potential non-traditional hypersonic flight dynamics. The phase will conclude with an innovative approach for evaluating the feasibility of proposed solutions.

In Phase II, the selected proposals will build on the solutions developed in Phase I and further evolve the physics-based and engineering solutions. The focus will be on lift, lift-to-drag ratios, high agility and maneuverability, high efficiency propulsion concepts, and materials tolerating high temperatures. The feasibility of proposed approaches will be assessed, and technologies will be down-selected to provide concluding approaches for vehicle range extensions.

Phase III of the program will explore dual-use applications, including offensive hypersonic weapons for tactical and strategic use. The materials sciences developed in the research could also be applied to space flight and hypersonic civilian airliner development.

The solicitation is currently open, with a release date of April 17, 2024, and an application due date of June 12, 2024. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" as part of the SBIR program. The research focuses on advancements in additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. The objective is to deliver combat power and lethality by achieving responsiveness, intensity, and the ability to deliver munitions at range. The technology sought includes propulsion solutions using high-density, storable, and rapidly loadable propellants, as well as advancements in understanding and characterizing novel fluid dynamics for enhanced propulsion performance. The solicitation is open for Phase II proposals only, and proposers must demonstrate feasibility and potential military or commercial applications. The Phase II effort consists of a base period of 12 months and an option period of 12 months. The ultimate goal is to transition and commercialize the developed technologies for both military and commercial applications, particularly in the areas of manned or unmanned air and space platforms.
DOD SBIR 24.4 Annual - Laminated Metallic Armor
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Laminated Metallic Armor" as part of its SBIR program. The Army branch is specifically interested in innovative manufacturing technologies that can cost-effectively produce laminated/graded metallic armor plates and high strength structural components. The goal is to reduce weight while maintaining the same level of force protection. In Phase I, proposals are accepted with a budget of up to $250,000 for a 6-month period. The feasibility of laminated steel armor will be demonstrated through various tasks, including computational materials engineering, prototype production, characterization, and ballistic testing. The weldability and scalability of the armor system will also be assessed. In Phase II, the focus shifts to maturing the manufacturing process, improving ballistic performance, and exploring the use of advanced alloys and multiple materials. The goal is to develop a stable and well-controlled process for producing shaped components with layered metallic armor arrangements. In Phase III, potential dual-use applications are highlighted, such as the automotive sector, space exploration, banking, construction machinery, and police/security industries. These industries can benefit from the enhanced performance and impact resistance of laminated armor. The solicitation is currently open, and the application due date is March 31, 2025. More details can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.
DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of the SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The system could have broad military applications where rapid iteration and production are needed, and it may be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page.
DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The potential impacts of this research include enabling rapid and iterative manufacturing processes for a broad range of military applications. The advanced manufacturing and modular design will be critical to all services where rapid iteration and production are needed. The system could be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page on the Defense SBIR/STTR website.
DOD SBIR 24.4 Annual - Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic. The Space Development Agency (SDA) is looking for novel architecture concepts, systems, technologies, and capabilities that enable leap-ahead improvements for future tranches of currently planned PWSA capability layers or address other emerging warfighter needs. The research areas include trusted AI and autonomy, advanced computing and software, integrated sensing and cyber, hypersonics, microelectronics, integrated network systems-of-systems, space technology, renewable energy generation and storage, advanced infrastructure, and advanced manufacturing. The solicitation is open for Phase II proposals only, and proposers must demonstrate the scientific and technical merit and feasibility of their projects. The research will be conducted in multiple themes, including integrating commercial sensing to the transport layer, developing optical inter-satellite link (OISL) technology and industrial base, cybersecurity, networking, in-space processing, increasing power for spacecraft bus, generic BMC3 hardware and middleware solutions, seamless multi-level security (MLS), and high-performance clocks for space. The Phase III applications of this research include providing low earth orbit communication systems and space-based processing for the distribution of overhead sensor data. The proposal submission deadline is March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the SDA website.