Combiner Architectures for Maximum Brightness Fiber Laser Amplifier Pumping
ID: AF233-0027Type: BOTH
Overview

Topic

Combiner Architectures for Maximum Brightness Fiber Laser Amplifier Pumping

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2023

Additional Information

https://www.defensesbirsttr.mil/
Timeline
  1. 1
    Release Aug 23, 2023 12:00 AM
  2. 2
    Open Sep 20, 2023 12:00 AM
  3. 3
    Next Submission Due Oct 18, 2023 12:00 AM
  4. 4
    Close Oct 18, 2023 12:00 AM
Description

The Department of Defense (DoD) is seeking proposals for the topic "Combiner Architectures for Maximum Brightness Fiber Laser Amplifier Pumping" as part of the SBIR 23.3 BAA. The objective of this research is to develop a combiner architecture for a fiber laser amplifier that can support at least 50% more pump power than existing state-of-the-art Yb laser systems. The combiner should operate with minimal loss of brightness and be compatible with existing commercial off-the-shelf pump diodes.

In Phase I, awardees will provide combiner designs, a trade space survey, and simulations to justify a design for a (N+1)x1 combiner architecture. In Phase II, awardees will develop manufacturing processes and demonstrate a combiner with less than 0.1 dB insertion loss and the ability to handle 15% of forward power in the reverse direction. The awardees will also conduct experiments to determine the combiner's power handling limitations and deliver four prototype combiners to AFRL/RDLT.

In Phase III, awardees will refine the combiner's thermal handling and manufacturability, delivering at least 10 units to AFRL/RDLT. The technology developed through this research has potential applications in next-generation directed energy weapons and the commercial laser material processing industry.

The solicitation is open from September 20, 2023, to October 18, 2023. More information can be found on the grants.gov website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" in their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions in police and first responder communications systems caused by RF interference, and improving communication between maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Automated Functional Grading of Materials for Directed Energy Deposition Additive Manufacturing
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of software for automated functional grading of materials in directed energy deposition additive manufacturing. This research topic aims to enable the production of complex, multi-material munitions with enhanced lethality. The software should allow for the creation of functionally graded materials (FGMs) by generating tool paths for multi-material grading in at least three directions. The software should be capable of accepting user inputted gradients for combinations of at least four metals simultaneously. In Phase I, a proof-of-concept software should be developed to print FGMs on a directed energy deposition additive manufacturing printer. The software should be able to accept user-generated gradients and demonstrate control over changing the mixing of metals. Materials characterization should be performed to verify the chemistry of the deposited gradient. In Phase II, the software should be expanded into a prototype capability, allowing for user-defined material grading using up to four metals simultaneously. Graded test coupons should be fabricated in multiple orientations, and a demonstration part containing a functionally graded material should be generated. Materials characterization should be performed for each coupon. The development of this software will greatly increase manufacturing capability and potentially help increase widespread adoption of directed energy deposition additive manufacturing technology. The military and civilian sectors, including manufacturing research, aerospace, mining, power, tool manufacturing, and medical applications, would benefit from this technology. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2651311).
DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" in their SBIR 24.4 Annual solicitation. The Defense Advanced Research Projects Agency (DARPA) is specifically interested in technologies related to additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. They are also looking for advancements in the understanding and characterization of novel fluid dynamics that enhance propulsion performance. The objective is to achieve coherence between a cooperating set of commodity devices, resulting in increased thrust to weight, fuel efficiencies, and propellant mass fractions. This solicitation is open for Phase II proposals only, and Phase I proposals will not be accepted or reviewed. Phase II will involve designing and evaluating enabling technologies at the system and subsystem level, as well as advancing modeling and simulation tools. Physical hardware proposals should include development, installation, integration, demonstration, and/or test and evaluation of the proposed prototype system. Software or advanced tool development proposals should have a development approach anchored in the physics of the problem and ways to validate the software against existing test data. The Phase II effort consists of a base period of 12 months and an option period of 12 months. Phase III of this project will focus on transition and commercialization of the developed technologies. The proposer is required to obtain funding from private sector or non-SBIR Government sources to develop the prototype software into a viable product or non-R&D service for sale in military or private sector markets. The technologies developed under this topic will have applications in both commercial and military sectors, including commercial transportation, high-speed delivery, and responsiveness to fluidic environments. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.4 Annual topic page on the SBIR website (https://www.sbir.gov/node/2492697). The solicitation is currently open, and the application due date is March 31, 2025.
DOD SBIR 24.4 Annual - Lightweight Longwave Bolometer Sensor Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Lightweight Longwave Bolometer Sensor Components" as part of the SBIR program. The objective of this topic is to develop components that enable low size, weight, and power (SWAP) thermal bolometer-type longwave thermal sensor payloads. These components should have equal or better performance than current commercial offerings while driving down SWAP. The components of interest include lens, focal plane, and readout and processing embedded hardware. The components should be ready for integration into a camera module by the end of Phase II. Thermal longwave infrared (LWIR) capabilities are crucial for many Army applications, especially for small Unmanned Aircraft Systems (UAS). However, the size, power, and weight constraints often limit the performance of these sensors. This topic aims to develop components that reduce the weight of thermal payloads while increasing their capabilities and keeping unit costs low. The project will have a Phase I and Phase II, with Phase I proposals accepting a cost of up to $250,000 for a 6-month period of performance. During Phase I, firms should design a proposed component with stakeholder input, analyze the SWAP-C impact of the component, and discuss how it will support the objective sensor payload. Phase II will involve completing the component design, fabricating, testing, and characterizing the component for integration into a lightweight sensor payload. Firms will also refine the design, define relevant interfaces, and lay out a high-level plan for integration. The potential applications of this research include smartphone camera augmentation, UAV camera augmentation, home security systems, and climate tech development. The project references academic research on bolometer manufacturing methods and the efficacy of leveraging colloidal quantum dots (QDs) for IR light sensing. Military contractors have also contributed to the research in the LWIR sensor and bolometer manufacturing spaces. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities page. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.