Innovative Solutions for Ethylene Oxide Mitigation Used in Sterilization Processes (Direct to Phase II)
ID: DHA244-D002Type: BOTH
Overview

Topic

Innovative Solutions for Ethylene Oxide Mitigation Used in Sterilization Processes (Direct to Phase II)

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for innovative solutions to mitigate ethylene oxide (ETO) used in sterilization processes. The goal is to promote environmentally friendly and sustainable practices in the field of sterilization technologies. ETO is commonly used in the manufacturing of medical devices for its effective sterilization properties, but its use raises environmental and health concerns due to its potential carcinogenicity. The DOD is specifically looking for advancements in sterilization technologies that prioritize environmental sustainability and health by minimizing or eliminating ethylene oxide emissions during medical device sterilization. The technology should be compatible with current ETO sterilization equipment and processes, and should not require significant alterations to existing setups. The proposal should include a plan for FDA clearance and EPA review, and the technology should be capable of operating continuously without becoming the rate-limiting step in current manufacturing processes. The Phase I of the project requires a feasibility study and documentation demonstrating the technical viability and strategic planning of the proposed solution. Phase II focuses on comprehensive development and refinement of the ETO byproduct mitigation solution, including prototype development, efficacy testing, regulatory compliance, and a scale-up strategy or commercialization plan. Following successful development, the technology has potential applications in various industries reliant on ETO sterilization, including medical, pharmaceutical, food, laboratory, veterinary, cosmetic, and textile sectors. The ultimate goal is to transition the ETO mitigation solution from development to widespread implementation across diverse industries, contributing to a safer and more sustainable future for medical device manufacturing. The proposal submission deadline is March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Innovative Solutions for Ethylene Oxide Mitigation Used in Sterilization Processes (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for innovative solutions to mitigate ethylene oxide (ETO) used in sterilization processes. The goal is to promote environmentally friendly and sustainable practices in the field of sterilization technologies. ETO is commonly used in the manufacturing of medical devices for its effective sterilization properties, but its use raises environmental and health concerns due to its potential carcinogenicity. The DOD is specifically looking for advancements in sterilization technologies that prioritize environmental sustainability and health by minimizing or eliminating ethylene oxide emissions during medical device sterilization. The technology should be compatible with current ETO sterilization equipment and processes, and should not require significant alterations to existing setups. The proposal should include a plan for FDA clearance and EPA review, and the technology should be operable with little training or background. The project will have a Phase I feasibility study followed by a Phase II development and refinement of the solution. The Phase II focus includes prototype development, efficacy testing, regulatory compliance, and a scale-up strategy or commercialization plan. The ultimate goal is to transition the ETO mitigation solution into widespread implementation across diverse industries, including medical, pharmaceutical, food, laboratory, veterinary, cosmetic, and textile sectors. The small business should have plans to secure funding from non-SBIR government sources and/or the private sector to develop or transition the prototypes into a viable product for sale to the military and/or commercial markets. The successful implementation of the ETO mitigation solution will contribute to a safer and more sustainable future for medical device manufacturing.
    DOD SBIR 24.4 Annual - Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program focused on the topic of "Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)". The Defense Health Agency is the branch responsible for this topic. The objective is to develop a simple-to-use sample collection and processing method capable of preparing an adequate specimen for the identification and accurate detection of specific fungal and/or bacterial species commonly associated with complex battlefield wound infections. The technology should be suitable for use in far-forward deployed environments. The current diagnostic capabilities for battlefield wound infections are limited and time-consuming, resulting in delays in treatment and medical intervention decisions. The proposed technology should enable rapid diagnosis (less than 2 hours) at the point of injury, improving patient outcomes and reducing morbidity and mortality. The technology should be compatible with wet/dry environments, require minimum logistical support, and be stable in long-term storage. It should also be easy to use with little training and provide unambiguous primary output. The technology must include a plan for FDA clearance and should align with CLIA-waived complexity standards. The SBIR program consists of three phases: Phase I focuses on demonstrating scientific and technical feasibility, Phase II involves refining the technology and integrating it with a rapid diagnostic platform, and Phase III aims to secure FDA approval and transition the technology for commercial use in both civilian and military settings. The proposal submission deadline is March 31, 2025. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.
    DOD SBIR 24.4 Annual - Water Tester at Point of Need
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a water tester at the point of need. The objective of this solicitation is to develop applied research for an innovative capability to improve water surveillance in field conditions. The goal is to create a rugged and compact field instrument that can provide microbiological and metal detection capabilities to reduce health risks to personnel. The water tester should be able to analyze for total coliforms, Escherichia coli, arsenic, lead, copper, and cyanide, providing rapid results within 4 hours. The equipment must be compact, durable, and able to fit in carry-on luggage, weighing no more than 25 pounds. The project will be conducted in two phases: Phase I involves a feasibility study, and Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military use, environmental programs, emergency response teams, and other federal directorates. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link: here.
    DOD SBIR 24.4 Annual - Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program focused on the topic of "Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)". The Defense Health Agency is the specific branch of the DOD overseeing this topic. The objective is to develop a simple-to-use sample collection and processing method that can accurately detect specific fungal and bacterial species commonly associated with complex battlefield wound infections. The technology should be capable of preparing an adequate specimen for identification and detection in far-forward deployed environments. The current diagnostic capabilities for battlefield wound infections are limited and time-consuming, leading to delays in treatment and medical intervention decisions. The proposed technology should provide rapid diagnostics with a sample collection-to-result time of less than 2 hours, improving patient outcomes and reducing morbidity and mortality. The technology should be compatible with wet/dry environments, require minimum logistical support, and be stable in long-term storage. It should also be easy to use with little training and provide unambiguous primary output. The technology must include a plan for FDA clearance and should align with CLIA-waived complexity standards. The SBIR program consists of three phases: Phase I focuses on demonstrating scientific and technical feasibility, Phase II involves refining the technology and integrating it with a rapid diagnostic platform, and Phase III aims to secure FDA approval and commercialize the technology for both civilian and military settings. The government may propose further harmonization of the technology with other relevant products to meet additional DoD requirements. The solicitation is open until March 31, 2025. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.
    DOD SBIR 24.4 Annual - Water Tester at Point of Need
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a water tester at the point of need. The objective of this research topic is to improve water surveillance by developing a rugged and compact field instrument capable of providing microbiological and metal detection capabilities. The goal is to reduce both short- and long-term health risks to personnel. The water tester should be able to analyze for total coliforms, Escherichia coli, arsenic, lead, copper, and cyanide, providing rapid results in less than 4 hours. The equipment must be compact, durable, and able to fit in a carry-on piece of luggage, weighing no more than 25 pounds. The project will be conducted in two phases: Phase I involves a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military use for Special Operations Forces and conventional forces, as well as environmental programs, emergency response teams, and other federal directorates. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation on grants.gov.
    DOD SBIR 24.4 Annual - Atmospheric Water Extraction Plus (AWE+)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Atmospheric Water Extraction Plus (AWE+)" as part of its SBIR program. The objective of this solicitation is to develop novel atmospheric water extraction technology with potential for energy use below 100Wh electric per liter of water generated across a wide range of environments. The technology should be integrated into a proof-of-concept prototype producing potable water with a clear path to full-size implementation. The DOD has a critical need to reduce water resupply requirements for mobile and self-sufficient operations. The development of AWE+ technology will have important tactical implications, reducing casualties and costs in forward operating environments. The goal is to provide potable water for a range of military needs by developing low-power, distributable systems that can provide water anywhere, anytime, and without the need for any external liquid water source. DARPA, the Defense Advanced Research Projects Agency, is specifically seeking teams with innovative means of releasing water from sorbents which is cyclically stable and has very low energy requirements. The technology should be able to produce water with not more than 100Wh electricity per liter of water produced, and not more than 100Wh thermal energy per liter of water produced. Proposals should outline a plan for reaching these energy metrics and provide an estimate for the range of environmental conditions at which the devices could operate. The project will be conducted in two phases. Phase I is a six-month effort focusing on proof-of-concept material and release mechanism development. Phase II is a 24-month effort with a base period of nine months, followed by two option periods. The performers will be expected to demonstrate functionality of their water capture and release mechanisms in a laboratory environment, producing at least 100mL of potable liquid water over a six-hour period with minimal loss in performance. The ultimate goal of this effort is to demonstrate AWE capable of meeting potable water needs for expeditionary scenarios with extremely high efficiency. Phase III will focus on transition within the DoD/military and further commercialization of the technology. Potential applications include satisfying military expeditionary water needs, reducing logistical footprint and vulnerability of supply lines, and developing next-generation dehumidification systems for residential and commercial HVAC. Keywords: Atmospheric water extraction, atmospheric water capture, atmospheric water harvesting, sorbent materials, advanced manufacturing. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities website. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
    DOD SBIR 24.4 Annual - Advanced Information Technology to Improve Mobility, Interoperability, and Survivability of Expeditionary Medical Command, Control, Communications, and Computers (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for advanced information technology to improve mobility, interoperability, and survivability of Expeditionary Medical Command, Control, Communications, and Computers (Direct to Phase II). The objective is to develop expeditionary and interoperable information technology (IT) to enable health care delivery, medical command and control, medical logistics, and patient movement in austere and contested environments. The technology should bridge the gaps between expeditionary medical units, brick-and-mortar medical facilities, and other healthcare providers, offering robust communications and computer IT packages to implement standards at all levels of care. The solutions should be mobile and rugged, ensuring uninterrupted and secure healthcare delivery within medical units and throughout the continuum. The project will have a Phase I feasibility study, followed by Phase II design refinement and prototype development. The final phase will focus on deployment and optimization of the technology in an operational environment. The potential applications of this technology include organizations requiring distributed operations or operations in austere environments, such as NATO forces, disaster relief efforts, and mobile clinics. Industries struggling with stovepipe systems or disparate/non-existent standards could also benefit from this technology. The project is open for proposals until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Medical Payloads for Army Robotic Platforms
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of medical payloads for Army robotic platforms. The objective is to create a modular medical mission payload that can carry heavy, climate-controlled containers to resupply blood and perform casualty evacuation (CASEVAC) with attachability to ground and air robotic/autonomous platforms. Currently, blood delivery, medical resupply, and CASEVAC are conducted by convoys of crewed vehicles, which can be limited in reaching the front line. The goal is to develop a medical multi-mission, modular payload that can be employed by robotic ground and air platforms. The payloads should comply with Safe Ride Standards for casualty evacuation using unmanned aerial vehicles (UAV), Robotics and Autonomous Systems, Ground (RAS-G), and modular payload design standards (Mod Payload). They should also be climate-controlled, collapsible, and capable of maintaining blood temperature between one and 10 degrees centigrade. The proposal should consider cost, and only Direct to Phase II (DP2) proposals will be accepted. The project duration includes Phase I, where a preliminary design of the payload should be formulated, Phase II, where the design is refined and a Technology Readiness Level (TRL) 5-6 system is created, and Phase III, which focuses on commercialization objectives. The solicitation is open until March 31, 2025. For more information, visit the SBIR topic link or the solicitation agency URL.
    DOD SBIR 24.4 Annual - Advanced Information Technology to Improve Mobility, Interoperability, and Survivability of Expeditionary Medical Command, Control, Communications, and Computers (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for advanced information technology to improve mobility, interoperability, and survivability of the Expeditionary Medical Command, Control, Communications, and Computers (Direct to Phase II). The objective is to develop expeditionary and interoperable IT solutions for healthcare delivery, medical command and control, medical logistics, and patient movement in austere and contested environments. The solutions should bridge the gaps between expeditionary medical units, brick-and-mortar medical facilities, and other healthcare providers. The focus is on developing mobile and rugged command, control, communications, and computer (C4) IT solutions that enable interoperability across all medical and administrative functions and domains. The solutions should implement joint/industry communications and health IT standards, meet cybersecurity requirements, and be resilient, scalable, and extensible. The project will have a Phase I and Phase II, with Phase II including design refinement, prototype development, and testing. The deliverables include one prototype, design and plans, progress reports, and a final report. The Phase III will focus on deploying the C4IT capability in an operational environment and optimizing the design for commercial viability. Potential commercial applications include organizations requiring distributed operations, disaster relief efforts, and industries struggling with disparate systems and growing user bases. The project is open for proposals until March 31, 2025. For more information, visit the solicitation agency's website here.
    DOD SBIR 24.4 Annual - Medical Payloads for Army Robotic Platforms
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of medical payloads for Army robotic platforms. The objective is to create a modular medical mission payload that can carry heavy, climate-controlled containers to resupply blood and perform casualty evacuation (CASEVAC) with attachability to ground and air robotic/autonomous platforms. Currently, blood delivery, medical resupply, and CASEVAC are conducted by crewed vehicles, which can be challenging in reaching the front line. The goal is to develop a medical multi-mission, modular payload that can be employed by robotic ground and air platforms. The payloads should comply with Safe Ride Standards for casualty evacuation using unmanned aerial vehicles (UAV), Robotics and Autonomous Systems, Ground (RAS-G), and modular payload design standards (Mod Payload). They should also be climate-controlled, collapsible, and capable of maintaining blood temperature between one and 10 degrees centigrade. The proposal should consider cost, and only Direct to Phase II (DP2) proposals will be accepted. The Phase II deliverables include refining the preliminary design, creating a Technology Readiness Level (TRL) 5-6 modular medical mission payload, and demonstrating the payload's performance at a vendor-provided, government-approved location. Phase III involves pursuing commercialization objectives, developing a manufacturing-ready product design, and engaging in laboratory or operational testing. The keywords for this solicitation are UAS, UAV, Medical Payloads, Resupply, CASEVAC, and UGV. For more information, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov.