Available for Licensing: High-Quality Actinide Thin Films via Molecular Beam Epitaxy for Quantum and Optoelectronic Devices
ID: BA-1441Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFBATTELLE ENERGY ALLIANCE–DOE CNTRIdaho Falls, ID, 83415, USA

NAICS

Semiconductor and Related Device Manufacturing (334413)

PSC

GENERAL SCIENCE AND TECHNOLOGY R&D SERVICES; GENERAL SCIENCE AND TECHNOLOGY; APPLIED RESEARCH (AJ12)
Timeline
    Description

    The Department of Energy is offering a licensing opportunity for high-quality actinide thin films produced via molecular beam epitaxy (MBE), specifically targeting applications in quantum and optoelectronic devices. This innovative process developed by researchers at Idaho National Laboratory (INL) allows for the precise deposition of epitaxial crystalline thin films of uranium and thorium, which are crucial for advancing theoretical and experimental research in complex electron correlations and next-generation computing technologies. The successful integration of these high-quality thin films with existing semiconductor technology presents significant potential for advancements in various high-tech applications, including quantum computing and optoelectronics. Interested parties can reach out to Javier Martinez at javier.martinez@inl.gov for further details regarding this opportunity.

    Point(s) of Contact
    Files
    No associated files provided.
    Similar Opportunities
    Efficient Additive Manufacturing for Advanced U-X Nuclear Fuel Alloys
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners to license innovative technology for efficient additive manufacturing of advanced U-X nuclear fuel alloys. The objective is to revolutionize the production of U-X compounds, such as U3Si2 and U-Mo alloys, by utilizing a patented Laser Engineered Net Shaping (LENS) process that streamlines manufacturing, reduces costs, and enhances safety compared to traditional methods. This technology is crucial for applications in commercial nuclear reactors, research reactors, and defense and space sectors, facilitating the production of next-generation accident-tolerant fuels. Interested companies should contact the Technology Deployment department at td@inl.gov for collaboration opportunities, as the focus is on licensing rather than procurement or hiring services.
    INL Innovation Spotlight Precision Enhancement for Thermocouples: A Leap in Measurement Accuracy
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking partnerships to commercialize an innovative technology aimed at enhancing the precision of thermocouples, which are critical for accurate temperature measurement across various industries. This technology utilizes ohmic heating to stabilize thermocouples, significantly improving their accuracy and lifespan while addressing the common issue of accuracy drift, particularly in high-temperature or radiation environments. With applications spanning manufacturing, aerospace, energy production, and healthcare, this advancement represents a significant leap in measurement reliability. Interested parties can learn more about licensing opportunities by contacting Andrew Rankin at andrew.rankin@inl.gov.
    Titanium-Tantalum Alloy Manufacturing for Biomedical and Engineering Applications
    Buyer not available
    The Department of Energy, specifically the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners for the licensing of an innovative electrochemical process for manufacturing titanium-tantalum alloys aimed at biomedical and engineering applications. This process addresses the challenges of traditional manufacturing methods, which are energy-intensive and generate significant waste, by enabling direct synthesis of alloys from metal oxides, thus promoting cost efficiency and sustainability. The technology has potential applications in biomedical devices, high-performance structural materials, and corrosion-resistant coatings, making it a valuable opportunity for companies interested in advancing manufacturing technologies. Interested parties can reach out to the Technology Deployment department at td@inl.gov for further collaboration opportunities.
    INL Innovation Spotlight Advanced Radiation Monitoring: Fieldable Long-Length Scintillating Fibers
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking innovative solutions for advanced radiation monitoring utilizing fieldable long-length scintillating fibers. The objective is to develop a technology that effectively detects and monitors radiation in challenging environments, such as nuclear repositories and medical irradiation facilities, by employing durable scintillating fibers exceeding 10 meters in length, combined with standard optical fibers over 100 meters. This technology addresses significant challenges in radiation monitoring, offering enhanced signal integrity and flexible deployment options essential for the safety and security of sensitive sites. Interested parties can contact Andrew Rankin at andrew.rankin@inl.gov for further information on licensing opportunities and collaboration, as this initiative is not a call for external services or funding.
    MARVEL End User Application & Utilization
    Buyer not available
    The Department of Energy, through Battelle Energy Alliance, is seeking Expressions of Interest (EOI) from industry providers for the MARVEL End User Application & Utilization project at the Idaho National Laboratory. The objective is to identify potential tests and experiments that leverage the Microreactor Application Research Validation and Evaluation (MARVEL) demonstration, which aims to serve as a nuclear testbed for innovative microreactor operations and applications, thereby facilitating private sector nuclear energy development. Interested parties are invited to propose concepts related to novel nuclear-generated electricity or heat applications, data access, reactor model validation, advanced instrumentation and control, or novel safeguards and security paradigms. Submissions are due by August 30, 2025, and must be no more than two pages in PDF format, detailing the application's goal, its impact on the U.S. nuclear industry, technical needs, and required support from INL. For further inquiries, contact Stacie Strain at stacie.strain@inl.gov.
    TECHNOLOGY TRANSFER LICENSING OPPORTUNITY: Secure Optical Quantum Communications (LEW-TOPS-108)
    Buyer not available
    NASA's Technology Transfer Program is seeking inquiries from companies interested in licensing rights to a groundbreaking technology for secure optical quantum communications, developed by NASA's Glenn Research Center. This technology utilizes entangled-photon pairs to enable highly secure mobile communications with minimal power requirements, making it suitable for a range of applications including fiber-optic and satellite communications. Interested parties can submit a license application through NASA’s Automated Technology Licensing Application System (ATLAS) and should direct any inquiries to NASA’s Technology Transfer Program at Agency-Patent-Licensing@mail.nasa.gov. Please note that no funding is provided in conjunction with these licenses, and no follow-on procurement is expected from this notice.
    INL Innovation Spotlight Efficient Protonic Ceramic Power: Dual-Mode Hydrogen and Electricity Generation
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking partnerships to advance its innovative technology in Efficient Protonic Ceramic Power, which enables dual-mode hydrogen production and electricity generation. This opportunity focuses on the development of a reversible solid oxide cell technology that operates efficiently at lower temperatures, addressing the critical need for sustainable energy conversion and storage solutions in the context of a global shift towards renewable energy. The technology, utilizing a high-performance PNC oxide material, offers enhanced efficiency, durability, and versatility for applications in renewable energy storage, hydrogen production, and power generation. Interested parties can engage with INL for licensing opportunities and further discussions by contacting Andrew Rankin at andrew.rankin@inl.gov.
    CAPABILITY: Magnetic Resonance Experiments
    Buyer not available
    The Department of Energy, specifically the Los Alamos National Laboratory (LANL), is offering a unique opportunity for companies interested in testing equipment for the detection of illicit substances, such as fentanyl, using magnetic resonance techniques. This initiative provides access to a controlled laboratory environment and relevant samples, along with support for experimental setup, handling of substances, and interpretation of results. The capability is part of LANL's broader effort to foster innovation and commercialize technologies developed by its researchers, with licensing options available for patented inventions and software. Interested parties can reach out to Kathleen McDonald at licensing@lanl.gov for further information.
    High-Temperature Compact Heat Exchangers for Harsh Environments
    Buyer not available
    The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners to license innovative high-temperature compact heat exchangers (CHXs) designed for harsh environments. The objective is to develop CHXs utilizing refractory metal designs with embedded sensors that enhance performance and reliability, addressing critical limitations of existing nickel-based alloy solutions, such as temperature constraints and corrosion issues. These advanced CHXs are crucial for applications in power generation, chemical processing, and metallurgy, offering significant improvements in durability, energy efficiency, and cost savings. Interested parties can reach out to the Technology Deployment department at td@inl.gov for collaboration opportunities.
    TECHNOLOGY LICENSING OPPORTUNITY: Remotely Operated Ultrasonic Separation (UltraSep)
    Buyer not available
    The Department of Energy is offering a technology licensing opportunity for UltraSep, a novel ultrasonic separation technology developed by Los Alamos National Laboratory. This technology aims to address inefficiencies in traditional filtration methods used in industrial manufacturing by providing a membrane-free solution that significantly reduces maintenance disruptions and operational footprint. UltraSep is designed for applications in various sectors, including food and beverage production, pharmaceutical processes, and critical nuclear operations, achieving over 99.9% metal removal and up to 95% bulk water extraction. Interested parties can reach out to Marc Witkowski or Lindsay Augustyn at licensing@lanl.gov for further discussions regarding partnership opportunities, as the technology is currently at Technology Readiness Level 5 and available for licensing agreements.