CAES Microscopy and Characterization Suite - INL Partnership Opportunity
ID: BD-004Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFBATTELLE ENERGY ALLIANCE–DOE CNTRIdaho Falls, ID, 83415, USA

PSC

SPECIAL STUDIES/ANALYSIS- CHEMICAL/BIOLOGICAL (B504)
Timeline
  1. 1
    Posted Apr 12, 2023 6:37 PM
  2. 2
    Updated Nov 16, 2023 7:51 PM
  3. 3
    Due Oct 25, 2023 2:00 PM
Description

Special Notice: ENERGY, DEPARTMENT OF is seeking industry partners for the CAES Microscopy and Characterization Suite at Idaho National Laboratory (INL). This state-of-the-art materials characterization laboratory offers cutting-edge equipment for precise and high-resolution detail in material research, fabrication, and characterization. The Microscopy and Characterization Suite (MaCS) provides cross-cutting capabilities to characterize a wide range of materials, including metals, semiconductors, ceramics, coal, minerals, and organic cellular materials. The suite includes advanced equipment such as Scanning Transmission Electron Microscopes, Local Electrode Atom Probe, Dual Focused Ion Beam, Scanning Electron Microscope, NanoIndenter/Atomic Force Microscope, X-Ray Diffractometer, NanoMill, and Microhardness Tester. INL is looking for industry partners who are interested in a longer-term strategic relationship, capable of fully funding the work or meeting cost-share commitments, and willing to collaborate under a DOE-approved mechanism. For more information, contact Javier Martinez at javier.martinez@inl.gov.

Point(s) of Contact
Files
No associated files provided.
Lifecycle
Title
Type
Similar Opportunities
TECHNOLOGY LICENSING OPPORTUNITY Continuous Electric-Field Assisted Sintering (CEFAS) System
Active
Energy, Department Of
Special Notice: ENERGY, DEPARTMENT OF is offering a technology licensing opportunity for a Continuous Electric-Field Assisted Sintering (CEFAS) System. This system revolutionizes traditional EFAS manufacturing by introducing a continuous processing method. It eliminates limitations on part length, significantly reduces processing time and energy consumption, and enables seamless industrial scale-up. The CEFAS system is ideal for material processing companies requiring sintering solutions, industries where scale-up and time efficiency are critical, and manufacturing processes requiring specialized part geometries. The technology is at a Technology Readiness Level (TRL) 4-5 with some validation work done in the laboratory. Interested companies should contact Andrew Rankin at td@inl.gov for more information on this licensing opportunity.
TECHNOLOGY LICENSING OPPORTUNITY Process for In-Situ Electric Field Assisted Sintering Quality Control
Active
Energy, Department Of
Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Process for In-Situ Electric Field Assisted Sintering Quality Control The Department of Energy is offering a technology licensing opportunity for a process that enables precision and efficiency in manufacturing and delivers unprecedented quality control for Electric Field Assisted Sintering (EFAS) processes. EFAS is a rapid heating process used for consolidating powder materials, but it can lead to local density variations within the sintered materials. This technology offers a non-destructive method for measuring localized porosity changes in EFAS materials, providing a valuable tool for enhancing quality control and overall efficiency. Researchers at Idaho National Laboratory have developed an approach that employs photothermal radiometry to measure the local thermal diffusivity of EFAS sintered materials, which directly correlates to localized percent porosities. This technology simplifies the measurement approach, providing accurate, non-destructive local density readings. The licensing opportunity is open to companies interested in commercializing this technology and contributing to improving EFAS quality control and accelerating product development. For more information, please contact Andrew Rankin at td@inl.gov.
TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials
Active
Energy, Department Of
Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials The Department of Energy is offering a technology licensing opportunity for embedded fiber optic sensors in high-temperature materials. This technology utilizes Electric Field-Assisted Sintering (EFAS) to embed fiber optic sensors in high-temperature structural materials for real-time structural health monitoring in extreme environments. It is typically used for real-time monitoring in high-temperature, high-pressure, and radioactive environments, making it crucial for ensuring the integrity and safety of components in industries such as nuclear reactors, aerospace, and high-temperature industrial settings. The technology has undergone testing to verify the integrity and functionality of the embedded fiber and the quality of the bond between the fiber and the metallic matrix. Benefits include achieving successful real-time monitoring, improving bond quality, ensuring scalability, and minimizing signal loss. Applications include nuclear reactor monitoring, aerospace components, automotive systems, energy production infrastructure, and biomedical engineering. The technology is at a Technology Readiness Level (TRL) 3, with key proof-of-concept experiments and parameter optimizations already completed. Interested companies should contact Andrew Rankin at td@inl.gov for more information on this licensing opportunity.
TECHNOLOGY LICENSING OPPORTUNITY Solid State Nuclear Lasing Sensors: Revolutionizing In-Pile Reactor Measurements
Active
Energy, Department Of
Special Notice: ENERGY, DEPARTMENT OF is seeking a technology licensing opportunity for Solid State Nuclear Lasing Sensors. These sensors revolutionize in-pile reactor measurements by enhancing accuracy and spatial resolution. Traditional nuclear reactor power measurement methods have limitations in spatial resolution and potential inaccuracies. This groundbreaking technology utilizes solid state lasing media/crystals to produce laser light, which directly correlates with reactor power and radiation flux. The sensors can be strategically placed within the reactor for real-time power/flux distribution measurements. The technology has applications in commercial nuclear power plants, micro nuclear reactors, and space power and nuclear thermal propulsion reactors. The development status is at TRL 3 - Analytical and experimental proof-of-concept. For more information and collaboration opportunities, please contact Andrew Rankin at td@inl.gov.
TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements
Active
Energy, Department Of
Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements The Department of Energy is seeking a technology licensing opportunity for Green 3D Electrodeposition (G3DED), a groundbreaking approach to fabricate high-performance metal fuels. This technology combines green electrodeposition with 3D manufacturing, ensuring efficiency, reduced contamination, and cost-effectiveness. Traditionally, metal fuel fabrication has relied on high-temperature processes, which often lead to contamination and waste. While 3D printing brought innovation, it introduced challenges in nuclear applications. The G3DED technology addresses these issues by harnessing the benefits of green electrodeposition in ionic liquid electrolytes and integrating it with advanced 3D manufacturing techniques. The G3DED technology allows for the fabrication of metallic fuels at room or slightly elevated temperatures, optimizing fuel composition and microstructures. It offers significant reductions in contamination and waste, versatility in using different starting materials, and potential cost savings due to process simplification. The technology is scalable and designed to meet diverse application needs. Potential applications of G3DED include fabrication of nuclear fuels and components, corrosion prevention, processing of new fuels, spent fuels, and nuclear wastes. It also has potential applications in the production of lightweight materials like aluminum and titanium alloys, manufacturing of battery materials, electrodes, and devices, and electrochemical dissolution of noble metals for etching and machining. The G3DED technology is currently at Technology Readiness Level (TRL) 2, with a technology concept and/or application formulated. It is protected by a US Patent Application (No. 17/309,574) managed by Battelle Energy Alliance, LLC. The Idaho National Laboratory (INL) is eager to form commercial collaborations and license the intellectual property to organizations proficient in bringing innovations to the market, particularly small businesses and start-ups. For further inquiries and collaboration opportunities, please contact Andrew Rankin at td@inl.gov. More information about collaborating with INL can be found at https://inl.gov/inl-initiatives/technology-deployment.