TECHNOLOGY/BUSINESS OPPORTUNITY Instrumented Neurovascular Unit Device
ID: IL-13964Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFLLNS – DOE CONTRACTORLivermore, CA, 94551, USA

NAICS

Analytical Laboratory Instrument Manufacturing (334516)
Timeline
    Description

    The Department of Energy's Lawrence Livermore National Laboratory (LLNL) seeks industry partners to commercialize its "Instrumented Neurovascular Unit Device." This technology creates an effective in vitro model of the blood-brain barrier for neurological research and drug development. The device supports 3D cell cultures and offers unique features for studying the central nervous system. LLNL has filed a patent for this technology, currently at TRL 2, and seeks interested companies to collaborate for its further development. Companies with relevant expertise are invited to respond with a statement of interest. Contact details: Primary - Yash Vaishnav, vaishnav1@llnl.gov, 9254223538; Secondary - Charlotte Eng, eng23@llnl.gov, 9254221905.

    Point(s) of Contact
    Files
    No associated files provided.
    Lifecycle
    Similar Opportunities
    TECHNOLOGY/BUSINESS OPPORTUNITY Long Shelf-Life UV Curable Silicone Formulation for Additive Manufacturing
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop and commercialize a novel UV photocurable, 3D printable silicone formulation that features increased curing time and enhanced shelf life. This innovative formulation aims to improve the additive manufacturing process for silicone-based products, allowing for more complex designs and significantly reducing the curing time to just one minute, while extending the shelf life of the silicone resin from 6 hours to 1 week. The technology is particularly relevant for applications in the rapid development of emergency medical devices, surgical guides, and other medical instruments. Interested companies are encouraged to submit a statement of interest, including relevant corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by email or written correspondence, with further details available on their website.
    Licensing Opportunity: Real-Time, Rapid and Noninvasive Atomic Lock-On in the Scanning Transmission Electron Microscope
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a groundbreaking technology that enables real-time, rapid, and non-invasive atomic lock-on in scanning transmission electron microscopes (STEM). This innovative procedure allows for ultra-precise targeting of individual atoms with a precision below 20 picometers, significantly enhancing the capabilities of STEM by automating beam experiments and minimizing human error. The technology is particularly relevant for applications in semiconductor manufacturing and materials research, providing benefits such as non-invasiveness, speed, and high precision. Interested parties can learn more about this opportunity by contacting partnerships@ornl.gov or calling 865-574-1051.
    TECHNOLOGY LICENSING OPPORTUNITY Revolutionary Scintillation Hydro-Gels: SHINE & SHADE for Enhanced Neutron and Antineutrino Detection
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a technology licensing opportunity for Revolutionary Scintillation Hydro-Gels: SHINE & SHADE for Enhanced Neutron and Antineutrino Detection. This groundbreaking solution addresses the global need for advanced, non-hazardous detection technologies in nuclear monitoring and safeguards. SHINE and SHADE are compact, non-hazardous, and high-efficiency gel materials designed for neutron and antineutrino detection respectively. They offer equivalent or higher capture efficiencies compared to current technologies, while being environmentally friendly and cost-effective. Potential applications include domestic nuclear material detection, nuclear reactor monitoring, medical imaging, and more. The technology is currently at TRL 4 and is available for licensing through the Idaho National Laboratory. For more information, contact Andrew Rankin at td@inl.gov.
    Licensing Opportunity: Cross-Facility Orchestration for Electrochemistry Experiments and Computations
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a technology designed to enhance electrochemistry experiments through cross-facility orchestration. This innovative solution involves the design and development of hardware and software that supports autonomous chemistry workflows, enabling real-time measurement transfer and analysis on high-performance computing systems, thereby addressing the limitations of manual testing. The technology is applicable across various fields, including isotope production, battery testing, and analytical chemistry, and aims to automate workflows, improve productivity, and minimize errors. For further information, interested parties can contact Leslie Smith at smithlm@ornl.gov or call 865-341-0373.
    The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Seeks Industry Partners for Clinical Research Collaborations on Therapeutics, Diagnostics or Devices for the Liver Cirrhosis Network
    Active
    Health And Human Services, Department Of
    Special Notice HEALTH AND HUMAN SERVICES, DEPARTMENT OF seeks industry partners for clinical research collaborations on therapeutics, diagnostics or devices for the Liver Cirrhosis Network. The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) is looking for industry collaborators to provide novel or repurposed therapeutic agents, diagnostic markers, biomarkers, devices, or services for use in NIH-sponsored multi-center clinical trials and ancillary studies in adult patients with advanced liver disease and cirrhosis. The Liver Cirrhosis Network aims to promote clinical and translational research on cirrhosis of the liver and related complications in adults. The network is interested in conducting research that will lead to improved clinical outcomes in adults with cirrhosis and advanced liver disease. Commercial organizations interested in pursuing clinical collaborations with NIDDK for cirrhosis liver disease are required to submit a Capability Statement to the NIDDK.
    INL Innovation Spotlight LVDT Intrinsic Temperature Measurement: Revolutionizing Precision Sensing
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF INL Innovation Spotlight LVDT Intrinsic Temperature Measurement: Revolutionizing Precision Sensing The Department of Energy is seeking innovative solutions for precision sensing in material test reactors. The LVDT Intrinsic Temperature Measurement method improves accuracy by directly sensing internal temperatures, eliminating the need for external thermocouples. This breakthrough technology provides precise and real-time temperature data, enhancing measurement accuracy in irradiation tests and other applications. It also simplifies sensor assembly and improves performance in extreme environments. The benefits include increased measurement accuracy, reduced complexity, improved performance in high-temperature scenarios, and long-term stability. The applications range from medical equipment and manufacturing to aerospace and military systems. The technology is currently at TRL 4 and has a provisional patent application. Interested businesses can engage with INL Tech Partnerships for licensing opportunities and support. For more information, contact Andrew Rankin at td@inl.gov.
    Licensing Opportunity: Speculative Evaluation of What-if Scenarios Using Continuously Evolving Tree of Simulations on Finite Memory Machines
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a novel simulation cloning framework designed for speculative evaluation of what-if scenarios using continuously evolving simulations on finite memory machines. This technology aims to enhance the efficiency of simulation computing by enabling the exploration of an exponentially large space of clone simulations, which is particularly beneficial for industries such as power grid management, personalized cancer treatments, and battlefield strategy evaluations. The framework provides significant advantages, including drastically reduced run times for complex simulations and usability for various high-performance computing applications without requiring users to understand the underlying cloning specifics. Interested parties can learn more about this opportunity by contacting Leslie Smith at smithlm@ornl.gov or by phone at 865-341-0373.
    Licensing Opportunity: Cryogenic Belt Driven Sample Changer
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a Cryogenic Belt Driven Sample Changer, developed by ORNL UT-Battelle LLC, aimed at enhancing the efficiency of sample changeouts in cryogenic systems. This innovative technology automates the labor-intensive process of manually loading samples into cryogenic vessels, significantly reducing turnaround time and maximizing sample throughput while minimizing thermal loss. The device is particularly beneficial for industries utilizing closed cycle refrigeration systems, X-ray light sources, and liquid nitrogen, and is characterized by its lightweight design, small footprint, and low operational costs. Interested parties can obtain further information by contacting Leslie Smith at smithlm@ornl.gov or by phone at 865-341-0373.
    Licensing Opportunity: Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a groundbreaking technology titled "Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope." This innovative method allows for the precise control and placement of atomic defects in materials, significantly enhancing applications in quantum photonics, magnetic storage, and catalysis, while overcoming limitations of traditional scanning tunneling microscopes. The technology is applicable to both 2D and 3D materials, enabling scalable atomic-scale manufacturing without damaging the material's atomic content. Interested parties can learn more about this opportunity by contacting Leslie Smith at smithlm@ornl.gov or by calling 865-341-0373.
    TECHNOLOGY LICENSING OPPORTUNITY Solid State Nuclear Lasing Sensors: Revolutionizing In-Pile Reactor Measurements
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a technology licensing opportunity for Solid State Nuclear Lasing Sensors. These sensors revolutionize in-pile reactor measurements by enhancing accuracy and spatial resolution. Traditional nuclear reactor power measurement methods have limitations in spatial resolution and potential inaccuracies. This groundbreaking technology utilizes solid state lasing media/crystals to produce laser light, which directly correlates with reactor power and radiation flux. The sensors can be strategically placed within the reactor for real-time power/flux distribution measurements. The technology has applications in commercial nuclear power plants, micro nuclear reactors, and space power and nuclear thermal propulsion reactors. The development status is at TRL 3 - Analytical and experimental proof-of-concept. For more information and collaboration opportunities, please contact Andrew Rankin at td@inl.gov.