TECHNOLOGY/BUSINESS OPPORTUNITY Long Shelf-Life UV Curable Silicone Formulation for Additive Manufacturing
ID: IL-13961Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFLLNS – DOE CONTRACTORLivermore, CA, 94551, USA

NAICS

Plastics Material and Resin Manufacturing (325211)
Timeline
    Description

    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop and commercialize a novel UV photocurable, 3D printable silicone formulation that features increased curing time and enhanced shelf life. This innovative formulation aims to improve the additive manufacturing process for silicone-based products, allowing for more complex designs and significantly reducing the curing time to just one minute, while extending the shelf life of the silicone resin from 6 hours to 1 week. The technology is particularly relevant for applications in the rapid development of emergency medical devices, surgical guides, and other medical instruments. Interested companies are encouraged to submit a statement of interest, including relevant corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by email or written correspondence, with further details available on their website.

    Point(s) of Contact
    Files
    No associated files provided.
    Similar Opportunities
    TECHNOLOGY/BUSINESS OPPORTUNITY High Performance Metal Droplet Ejection
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop and commercialize its High-Performance Metal Droplet Ejection technology. This initiative focuses on advancing liquid metal jetting (LMJ), an innovative method for high throughput, powder- and laser-free metal additive manufacturing, which also serves as an alternative for generating high-quality metal powder feedstock. LLNL is seeking industry partners capable of bringing this patented technology to market, emphasizing improved performance and reduced operating costs, with potential applications in metal additive manufacturing and powder production. Interested companies should submit a statement of interest, including relevant corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by email or written correspondence.
    Licensing Opportunity: Limited Center Constraint of Optimal Thickness Build Substrates for Additive Manufacturing
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a technology titled "Limited Center Constraint of Optimal Thickness Build Substrates for Additive Manufacturing," developed by ORNL UT-Battelle LLC. This innovative method addresses significant challenges in additive manufacturing, specifically focusing on substrate design and fixturing to minimize residual stress, distortion, and cracking during the printing process. The technology is applicable across various industries, including aerospace, automotive, and composite manufacturing, ensuring that the final machined part remains intact despite substrate distortion. Interested parties can contact Alex DeTrana at detranaag@ornl.gov or call 865-341-0423 for further information regarding this opportunity.
    TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements The Department of Energy is seeking a technology licensing opportunity for Green 3D Electrodeposition (G3DED), a groundbreaking approach to fabricate high-performance metal fuels. This technology combines green electrodeposition with 3D manufacturing, ensuring efficiency, reduced contamination, and cost-effectiveness. Traditionally, metal fuel fabrication has relied on high-temperature processes, which often lead to contamination and waste. While 3D printing brought innovation, it introduced challenges in nuclear applications. The G3DED technology addresses these issues by harnessing the benefits of green electrodeposition in ionic liquid electrolytes and integrating it with advanced 3D manufacturing techniques. The G3DED technology allows for the fabrication of metallic fuels at room or slightly elevated temperatures, optimizing fuel composition and microstructures. It offers significant reductions in contamination and waste, versatility in using different starting materials, and potential cost savings due to process simplification. The technology is scalable and designed to meet diverse application needs. Potential applications of G3DED include fabrication of nuclear fuels and components, corrosion prevention, processing of new fuels, spent fuels, and nuclear wastes. It also has potential applications in the production of lightweight materials like aluminum and titanium alloys, manufacturing of battery materials, electrodes, and devices, and electrochemical dissolution of noble metals for etching and machining. The G3DED technology is currently at Technology Readiness Level (TRL) 2, with a technology concept and/or application formulated. It is protected by a US Patent Application (No. 17/309,574) managed by Battelle Energy Alliance, LLC. The Idaho National Laboratory (INL) is eager to form commercial collaborations and license the intellectual property to organizations proficient in bringing innovations to the market, particularly small businesses and start-ups. For further inquiries and collaboration opportunities, please contact Andrew Rankin at td@inl.gov. More information about collaborating with INL can be found at https://inl.gov/inl-initiatives/technology-deployment.
    Licensing Opportunity: Low-Cost Hot Melt Adhesives with Improved Adhesive Strength
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a low-cost hot melt adhesive (HMA) with improved adhesive strength, developed by ORNL UT-Battelle LLC. This innovative adhesive technology simplifies processing by allowing application in a solid form that creates strong bonds upon heating and cooling, making it suitable for various applications such as packaging, manufacturing, and electronics. The adhesive exhibits exceptional adhesion to metals like stainless steel and aluminum, while also allowing for easy disassembly, thus enhancing manufacturing efficiency. Interested parties can learn more about this technology by contacting Andreana Leskovjan at leskovjanac@ornl.gov or by phone at 865-341-0433.
    TECHNOLOGY LICENSING OPPORTUNITY Revolutionary Scintillation Hydro-Gels: SHINE & SHADE for Enhanced Neutron and Antineutrino Detection
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a technology licensing opportunity for Revolutionary Scintillation Hydro-Gels: SHINE & SHADE for Enhanced Neutron and Antineutrino Detection. This groundbreaking solution addresses the global need for advanced, non-hazardous detection technologies in nuclear monitoring and safeguards. SHINE and SHADE are compact, non-hazardous, and high-efficiency gel materials designed for neutron and antineutrino detection respectively. They offer equivalent or higher capture efficiencies compared to current technologies, while being environmentally friendly and cost-effective. Potential applications include domestic nuclear material detection, nuclear reactor monitoring, medical imaging, and more. The technology is currently at TRL 4 and is available for licensing through the Idaho National Laboratory. For more information, contact Andrew Rankin at td@inl.gov.
    TECHNOLOGY LICENSING OPPORTUNITY Enhanced Stability for Li Metal Batteries with Molybdenum Decorated Collectors
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a Technology Licensing Opportunity for the Fabrication of Complex Microchannels using Co-Sintering. This technology offers a hybrid co-sintering process with 3D printing and chemical processing, allowing for superior microstructural control, simplified component processing, and novel coatings control in embedded microchannels. The service/item being procured is typically used for the development of anode-free rechargeable lithium batteries with improved cycling performance and significantly increased energy density. The technology utilizes a molybdenum-based current collector at the anode side, which induces uniform Li plating/stripping morphologies with reduced overpotential, suppressing dendrite growth and dead Li formation. This scalable process uses commercially available sputtering technology and is currently at Technology Readiness Level 2, requiring proof-of-concept work. Interested parties can partner with Idaho National Laboratory (INL) for access to this pioneering technology and mutual growth. For more information, please contact Andrew Rankin at td@inl.gov.
    Licensing Opportunity: Method of Part Segmentation and Assembly for Fabrication of Complex Cylindrical Housings
    Active
    Energy, Department Of
    The Department of Energy, specifically ORNL UT-Battelle LLC, is offering a licensing opportunity for a novel method of part segmentation and assembly aimed at the fabrication of complex cylindrical housings. This technology addresses the challenges associated with manufacturing protective casings, particularly for aerospace applications, by enabling the machining of internal features in segments, which can then be joined and finished more efficiently than traditional methods. The approach not only enhances machining access and reduces production time but also eliminates the need for long lead times associated with special forgings, ultimately resulting in significant cost savings. Interested parties can learn more about this opportunity by contacting Alex DeTrana at detranaag@ornl.gov or by phone at 865-341-0423.
    Licensing Opportunity: Tailored Polymer Binder for Flexible Sulfide Electrolyte Films
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a tailored polymer binder designed for flexible sulfide electrolyte films, aimed at enhancing the manufacturing of solid-state batteries for electric vehicles and other applications. This innovative technology addresses the challenges of producing high-performance solid electrolytes by optimizing the binder's molecular weight, which significantly improves the mechanical and electrochemical performance of the batteries. The advancements in this technology promise reduced costs, improved safety, increased energy density, and enhanced battery life, making it suitable for material manufacturers and suppliers in the solid-state battery industry. Interested parties can learn more by contacting Andreana Leskovjan at leskovjanac@ornl.gov or by calling 865-341-0433.
    Licensing Opportunity: A New Hybrid Explicit-Implicit Method to Accelerate Large-Scale Transient Thermal Stress Analysis
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a novel hybrid explicit-implicit method designed to accelerate large-scale transient thermal stress analysis. This innovative algorithm combines implicit and explicit simulation techniques to enhance the efficiency and accuracy of thermomechanical processes, particularly in additive manufacturing and welding applications. The technology significantly reduces computational time while maintaining high accuracy, making it suitable for complex processes characterized by multiple heating and cooling cycles. Interested parties can learn more about this opportunity by contacting Alex DeTrana at detranaag@ornl.gov or by phone at 865-341-0423.
    TECHNOLOGY TRANSFER OPPORTUNITY: RTV Silicone Sealing Method for Component Interfaces (MSC-TOPS-127)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology transfer opportunity. The technology involves a method using low-viscosity RTV silicone to form durable seals between polymer bladder and metal bulkhead interfaces for inflatable space habitats. This method addresses concerns about potential failure of the bladder material and overall seal caused by the compressive force of an O-ring. The RTV silicone sealing method has potential commercial applications on Earth and is now available for patent licensing. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.