TECHNOLOGY/BUSINESS OPPORTUNITY High-performance electrode with tuneable RF transmission
ID: IL-13988Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFLLNS – DOE CONTRACTORLivermore, CA, 94551, USA

NAICS

Other Building Material Dealers (444180)
Timeline
  1. 1
    Posted Jan 17, 2025, 12:00 AM UTC
  2. 2
    Updated Jan 17, 2025, 12:00 AM UTC
  3. 3
    Due Feb 18, 2025, 2:00 AM UTC
Description

The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop and commercialize a high-performance electrode with tuneable RF transmission technology. This innovative technology aims to enhance the performance of electrochemical devices, particularly smart windows, by providing low sheet resistance while maintaining high radio frequency (RF) transparency, addressing the limitations of traditional transparent conductive oxides (TCOs) and metal meshes. Interested companies with relevant expertise are encouraged to submit a statement of interest, including company details and capabilities, to LLNL's Innovation and Partnerships Office by contacting Jared Lynch or Charlotte Eng via email or phone, as this opportunity is not a procurement but a call for industry partnership.

Point(s) of Contact
Files
No associated files provided.
Lifecycle
Title
Type
Similar Opportunities
Tech Licensing Opportunity: Realtime Electrochemical Waveform Control with Integrated Performance Monitoring
Buyer not available
The Department of Energy, through the Battelle Energy Alliance, is offering a technology licensing opportunity for a novel system known as Realtime Electrochemical Waveform Control with Integrated Performance Monitoring. This technology aims to enhance the performance and efficiency of electrochemical devices, such as batteries and fuel cells, by enabling continuous performance analytics and optimization without interrupting operations. The integration of real-time waveform analysis addresses significant challenges in the electrolysis and fuel cell industries, particularly the need for sophisticated performance monitoring in large-scale systems. Interested parties can reach out to Andrew Rankin at andrew.rankin@inl.gov for further details, and additional information about licensing opportunities can be found at https://inl.gov/technology-deployment/.
Grid Research Integration and Deployment Center Technology Collaborations for US Power Electronics Industries
Buyer not available
The Department of Energy's Oak Ridge National Laboratory (ORNL) is seeking U.S. industry partners for collaborative projects at its Grid Research Integration and Deployment Center (GRID-C) to advance power electronics technologies for grid modernization. ORNL invites cost-shared proposals from industries aligned with its facilities and expertise in areas such as Materials & Components, Embedded Controllers, and Subsystems Devices. Selected partners will work closely with ORNL staff, leveraging its unique capabilities to demonstrate innovative grid integration solutions. The focus is on accelerating the development of resilient and energy-efficient power electronics, with projects conducted in short timeframes. Industry participants are required to contribute at least 20% of the project cost, which can include in-kind contributions, and must align with ORNL's facilities and capabilities. GRID-C collaborations aim to strengthen the U.S. power electronics industry and clean energy landscape. Proposals are evaluated based on technical feasibility, commercialization potential, and their impact on grid improvement. This initiative supports the DOE Transformer Resilience and Advanced Components (TRAC) Program's mission. For more details, eligible industries should refer to the proposal guidelines and contact Dr. Madhu Chinthavali for inquiries. The announcement remains open, with funding available through the DOE contract.
Tech Licensing Opportunity: Electric Field Assisted Sintering of Bimetallic Materials
Buyer not available
The Department of Energy is offering a technology licensing opportunity for a novel method of Electric Field Assisted Sintering (EFAS) of bimetallic materials, aimed at enhancing the joining of dissimilar metals. This innovative technology addresses the limitations and high costs associated with traditional welding methods, providing a practical solution for industries such as aerospace, heat transfer, and manufacturing by enabling the fusion of materials like aluminum and stainless steel without the need for bulky connectors. The technology is currently at Technology Readiness Level 5 and is supported by a US Provisional Patent Application, with the Idaho National Laboratory (INL) seeking partnerships to commercialize this advancement. Interested parties can contact Andrew Rankin at andrew.rankin@inl.gov for further discussions on licensing terms and opportunities.
Efficient Additive Manufacturing for Advanced U-X Nuclear Fuel Alloys
Buyer not available
The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners to license innovative technology for efficient additive manufacturing of advanced U-X nuclear fuel alloys. The objective is to revolutionize the production of U-X compounds, such as U3Si2 and U-Mo alloys, by utilizing a patented Laser Engineered Net Shaping (LENS) process that streamlines manufacturing, reduces costs, and enhances safety compared to traditional methods. This technology is crucial for applications in commercial nuclear reactors, research reactors, and defense and space sectors, facilitating the production of next-generation accident-tolerant fuels. Interested companies should contact the Technology Deployment department at td@inl.gov for collaboration opportunities, as the focus is on licensing rather than procurement or hiring services.
Tech Licensing Opportunity: Advanced Bonding Method for Heterogeneous Systems
Buyer not available
The Department of Energy is offering a technology licensing opportunity for an advanced bonding method designed for heterogeneous systems, developed by researchers at the Idaho National Laboratory (INL). This innovative method allows for the seamless bonding of similar and dissimilar materials without visible bond lines, significantly enhancing material integrity and durability while reducing energy consumption compared to traditional bonding techniques. The technology is particularly relevant for industries such as aerospace, electronics, and nuclear, where material reliability is critical. Interested parties can reach out to Andrew Rankin at andrew.rankin@inl.gov for further discussions on licensing terms and opportunities for collaboration.
INL Innovation Spotlight Efficient Protonic Ceramic Power: Dual-Mode Hydrogen and Electricity Generation
Buyer not available
The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking partnerships to advance its innovative technology in Efficient Protonic Ceramic Power, which enables dual-mode hydrogen production and electricity generation. This opportunity focuses on the development of a reversible solid oxide cell technology that operates efficiently at lower temperatures, addressing the critical need for sustainable energy conversion and storage solutions in the context of a global shift towards renewable energy. The technology, utilizing a high-performance PNC oxide material, offers enhanced efficiency, durability, and versatility for applications in renewable energy storage, hydrogen production, and power generation. Interested parties can engage with INL for licensing opportunities and further discussions by contacting Andrew Rankin at andrew.rankin@inl.gov.
INL Innovation Spotlight Precision Enhancement for Thermocouples: A Leap in Measurement Accuracy
Buyer not available
The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking partnerships to commercialize an innovative technology aimed at enhancing the precision of thermocouples, which are critical for accurate temperature measurement across various industries. This technology utilizes ohmic heating to stabilize thermocouples, significantly improving their accuracy and lifespan while addressing the common issue of accuracy drift, particularly in high-temperature or radiation environments. With applications spanning manufacturing, aerospace, energy production, and healthcare, this advancement represents a significant leap in measurement reliability. Interested parties can learn more about licensing opportunities by contacting Andrew Rankin at andrew.rankin@inl.gov.
Titanium-Tantalum Alloy Manufacturing for Biomedical and Engineering Applications
Buyer not available
The Department of Energy, specifically the Battelle Energy Alliance at the Idaho National Laboratory, is seeking industry partners for the licensing of an innovative electrochemical process for manufacturing titanium-tantalum alloys aimed at biomedical and engineering applications. This process addresses the challenges of traditional manufacturing methods, which are energy-intensive and generate significant waste, by enabling direct synthesis of alloys from metal oxides, thus promoting cost efficiency and sustainability. The technology has potential applications in biomedical devices, high-performance structural materials, and corrosion-resistant coatings, making it a valuable opportunity for companies interested in advancing manufacturing technologies. Interested parties can reach out to the Technology Deployment department at td@inl.gov for further collaboration opportunities.
Tech Licensing Opportunity: Advanced Feedthrough Assembly Technology for Sealed Environments
Buyer not available
The Department of Energy, through the Battelle Energy Alliance, is offering a technology licensing opportunity for an Advanced Feedthrough Assembly Technology designed for sealed environments. This innovative technology aims to enhance the integrity of sealed chambers critical for industrial processes and scientific research, addressing challenges such as leakage due to pressure differentials and seal degradation under extreme conditions. The feedthrough assembly is particularly suited for applications in industrial manufacturing, scientific research, and aerospace and defense, ensuring reliable performance in demanding environments. Interested parties can reach out to Andrew Rankin at andrew.rankin@inl.gov for further discussions regarding licensing terms and opportunities for collaboration.
INL Innovation Spotlight Advanced Radiation Monitoring: Fieldable Long-Length Scintillating Fibers
Buyer not available
The Department of Energy, through the Battelle Energy Alliance at the Idaho National Laboratory (INL), is seeking innovative solutions for advanced radiation monitoring utilizing fieldable long-length scintillating fibers. The objective is to develop a technology that effectively detects and monitors radiation in challenging environments, such as nuclear repositories and medical irradiation facilities, by employing durable scintillating fibers exceeding 10 meters in length, combined with standard optical fibers over 100 meters. This technology addresses significant challenges in radiation monitoring, offering enhanced signal integrity and flexible deployment options essential for the safety and security of sensitive sites. Interested parties can contact Andrew Rankin at andrew.rankin@inl.gov for further information on licensing opportunities and collaboration, as this initiative is not a call for external services or funding.