Grid Research Integration and Deployment Center Technology Collaborations for US Power Electronics Industries
ID: ORNL-GRIDC-TC-2024Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFORNL UT-BATTELLE LLC-DOE CONTRACTOROak Ridge, TN, 37831, USA

NAICS

Research and Development in the Physical, Engineering, and Life SciencesT (54171)
Timeline
    Description

    The Department of Energy's Oak Ridge National Laboratory (ORNL) is seeking U.S. industry partners for collaborative projects at its Grid Research Integration and Deployment Center (GRID-C) to advance power electronics technologies for grid modernization. ORNL invites cost-shared proposals from industries aligned with its facilities and expertise in areas such as Materials & Components, Embedded Controllers, and Subsystems Devices. Selected partners will work closely with ORNL staff, leveraging its unique capabilities to demonstrate innovative grid integration solutions.

    The focus is on accelerating the development of resilient and energy-efficient power electronics, with projects conducted in short timeframes. Industry participants are required to contribute at least 20% of the project cost, which can include in-kind contributions, and must align with ORNL's facilities and capabilities.

    GRID-C collaborations aim to strengthen the U.S. power electronics industry and clean energy landscape. Proposals are evaluated based on technical feasibility, commercialization potential, and their impact on grid improvement. This initiative supports the DOE Transformer Resilience and Advanced Components (TRAC) Program's mission.

    For more details, eligible industries should refer to the proposal guidelines and contact Dr. Madhu Chinthavali for inquiries. The announcement remains open, with funding available through the DOE contract.

    Point(s) of Contact
    Files
    Title
    Posted
    The Oak Ridge National Laboratory (ORNL) seeks industry partners for collaborative projects at its Grid Research Integration and Deployment Center (GRID-C). The objective is to accelerate the development and deployment of advanced power electronics technologies for grid modernization. GRID-C provides access to unique capabilities and expertise to support integration of clean energy resources. ORNL invites cost-shared proposals from U.S. industries aligned with the laboratory's facilities and focusing on specific technology areas. These areas include Materials & Components, Embedded Controllers, Subsystems Devices, Resource Integration Systems, and Grid Systems Architecture. Partners will collaborate with ORNL staff and leverage its facilities for project activities. With a Cooperative Research and Development Agreement (CRADA) in place, the laboratory aims to protect intellectual property and proprietary data. Proposals are evaluated based on compatibility, technical merit, commercialization potential, and grid improvement. The announcement remains open, with selections made by the DOE Transformer Resilience and Advanced Components (TRAC) Program.
    The primary objective of this file is to establish a Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, and a Participant. This CRADA aims to facilitate collaborative research and development efforts in a mutually beneficial partnership. The focus is on developing and sharing intellectual property while adhering to specific guidelines. The Statement of Work outlines the technical objectives, which include tasks related to defining the research goals, with each party having clearly defined responsibilities. The work is expected to be completed within a specified period, typically ranging from months to years. The CRADA also encompasses provisions for managing intellectual property, including subject inventions and data, with both parties having the first option to retain title to their respective inventions. Additionally, there are provisions for holding meetings, reporting, and managing the program. This file mentions a budget of around $XX,XXX each from the Participant and the Government, with the latter provided through UT-Battelle's DOE contract. The funding details and a sixty-day advance funding requirement are emphasized as a key aspect of the agreement. Key dates include the expected completion dates for tasks and the submission of reports, while the evaluation criteria are not explicitly mentioned. The entire agreement should be executed by both parties and approved by the DOE for it to take effect.
    Similar Opportunities
    Manufacturing Demonstration Facility: Technology Collaborations for US Manufacturers in Advanced Manufacturing and Materials Technologies
    Active
    Energy, Department Of
    The Department of Energy, through the Oak Ridge National Laboratory (ORNL), is seeking industry partners for collaborative projects aimed at developing energy-efficient manufacturing technologies within its Manufacturing Demonstration Facility (MDF). The initiative focuses on reducing manufacturing energy intensity and enhancing U.S. competitiveness by inviting proposals from industries engaged in material processing, particularly in advanced manufacturing technologies such as additive manufacturing and carbon fiber composites. Participants must provide at least a 50% cost share, and projects will be evaluated based on technical feasibility, potential for commercialization, and energy savings. Proposals can be submitted via email to MDFcollaboration@ornl.gov, and the submission period remains open, contingent on funding availability from the DOE Advanced Manufacturing Office.
    Licensing Opportunity: Envelope Detector-based Phase Fault Detection for Smart Grid Systems
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for an innovative envelope-detector-based phase fault detection algorithm designed for smart grid systems. This technology aims to enhance real-time fault detection in power grids, addressing the limitations of conventional systems by accurately identifying fault regions and diagnosing ground errors, thereby improving the reliability and stability of power systems. The algorithm is applicable for both simulated and real-world data, making it valuable for power grid operators and electric utilities seeking to enhance their fault detection capabilities. Interested parties can learn more about this technology by contacting Alex DeTrana at detranaag@ornl.gov or by phone at 865-341-0423.
    Licensing Opportunity: High Dielectric Constant CCTO/PI Composites Enabled by Dispersants
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a novel ceramic-polymer composite material designed for capacitors, specifically targeting the evolving demands of electric vehicles and power electronics. This innovative technology combines the advantageous properties of ceramic and polymer materials to create a high dielectric constant composite that operates effectively at elevated temperatures (≥200 degrees Celsius) while maintaining high dielectric strength and reduced volume. The resulting capacitors are expected to outperform existing technologies, making them suitable for various applications in automotive manufacturing, battery production, and high-power electronics. Interested parties can learn more about this technology by contacting Alex DeTrana at detranaag@ornl.gov or by calling 865-341-0423.
    Opportunity to collaborate using a Cooperative Research and Development Agreement (CRADA)
    Active
    Energy, Department Of
    The Department of Energy, through Sandia National Laboratories, is offering an opportunity for collaboration via a Cooperative Research and Development Agreement (CRADA) with non-federal entities, including businesses, nonprofits, universities, and government agencies. This initiative aims to leverage Sandia's advanced technologies and expertise to enhance innovation, commercialization capabilities, and support the missions of the U.S. Department of Energy. The CRADA framework fosters joint efforts in research and technology transfer, ensuring the protection of commercially valuable information while promoting local economic growth and industry advancements. Interested parties are encouraged to express their interest by contacting the CRADA Team at CRADA@sandia.gov for further engagement.
    Building Technologies Research and Integration Center: Technology Collaborations for US Building Technologies Industries
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking Technology Collaborations for US Building Technologies Industries at the Building Technologies Research and Integration Center (BTRIC) in Oak Ridge, TN (zip code: 37831), USA. This collaboration opportunity aims to enhance the research and integration of building technologies. For more information, contact Ron Ott at ottr@ornl.gov or 865-574-5172.
    Licensing Opportunity: Cross-Facility Orchestration for Electrochemistry Experiments and Computations
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a technology designed to enhance electrochemistry experiments through cross-facility orchestration. This innovative solution involves the design and development of hardware and software that supports autonomous chemistry workflows, enabling real-time measurement transfer and analysis on high-performance computing systems, thereby addressing the limitations of manual testing. The technology is applicable across various fields, including isotope production, battery testing, and analytical chemistry, and aims to automate workflows, improve productivity, and minimize errors. For further information, interested parties can contact Leslie Smith at smithlm@ornl.gov or call 865-341-0373.
    Licensing Opportunity: Microballast Electrode Materials
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a novel technology related to microballast electrode materials aimed at enhancing battery performance. This invention addresses the limitations of current battery materials, particularly silicon, by improving ion and electron transport through optimized pathways, thereby facilitating faster charging and more efficient battery operation. The technology has significant applications across various industries, including rechargeable batteries, electric vehicles, and electrochemical systems. Interested parties can obtain more information by contacting Leslie Smith at smithlm@ornl.gov or by calling 865-341-0373.
    TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Green 3D Electrodeposition (G3DED): Revolutionizing Advanced Manufacturing of Metallic Fuel Elements The Department of Energy is seeking a technology licensing opportunity for Green 3D Electrodeposition (G3DED), a groundbreaking approach to fabricate high-performance metal fuels. This technology combines green electrodeposition with 3D manufacturing, ensuring efficiency, reduced contamination, and cost-effectiveness. Traditionally, metal fuel fabrication has relied on high-temperature processes, which often lead to contamination and waste. While 3D printing brought innovation, it introduced challenges in nuclear applications. The G3DED technology addresses these issues by harnessing the benefits of green electrodeposition in ionic liquid electrolytes and integrating it with advanced 3D manufacturing techniques. The G3DED technology allows for the fabrication of metallic fuels at room or slightly elevated temperatures, optimizing fuel composition and microstructures. It offers significant reductions in contamination and waste, versatility in using different starting materials, and potential cost savings due to process simplification. The technology is scalable and designed to meet diverse application needs. Potential applications of G3DED include fabrication of nuclear fuels and components, corrosion prevention, processing of new fuels, spent fuels, and nuclear wastes. It also has potential applications in the production of lightweight materials like aluminum and titanium alloys, manufacturing of battery materials, electrodes, and devices, and electrochemical dissolution of noble metals for etching and machining. The G3DED technology is currently at Technology Readiness Level (TRL) 2, with a technology concept and/or application formulated. It is protected by a US Patent Application (No. 17/309,574) managed by Battelle Energy Alliance, LLC. The Idaho National Laboratory (INL) is eager to form commercial collaborations and license the intellectual property to organizations proficient in bringing innovations to the market, particularly small businesses and start-ups. For further inquiries and collaboration opportunities, please contact Andrew Rankin at td@inl.gov. More information about collaborating with INL can be found at https://inl.gov/inl-initiatives/technology-deployment.
    Licensing Opportunity: Membrane Contactor for Energy-Efficient CO2 Capture from Point Sources with Physical Solvents
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a novel membrane contactor technology designed for energy-efficient CO2 capture from point sources using physical solvents. This innovative method utilizes deep eutectic solvents (DES) in a membrane contactor system, allowing for effective CO2 separation through a process that includes gas contact, physisorption, and solvent recirculation, all while minimizing energy consumption and operational challenges associated with traditional methods. The technology has significant applications across various industries, including power generation, chemical manufacturing, biogas upgrading, and natural gas processing, making it a vital solution in the fight against greenhouse gas emissions. Interested parties can reach out to Andreana Leskovjan at leskovjanac@ornl.gov or call 865-341-0433 for further information regarding this opportunity.
    Licensing Opportunity: Scalable Nitrogen-Carbon Catalyst for CO2 Reduction Using Nitrogen Plasma (N2) Treatment
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a scalable nitrogen-carbon catalyst designed for carbon dioxide reduction using nitrogen plasma treatment. This innovative technology aims to enhance the efficiency of sodium-carbon dioxide (Na-CO2) batteries by overcoming the limitations of traditional carbon materials like Carbon Nanotubes (CNT) and graphene, which have shown significant inactivity in electrochemical CO2 reduction applications. The nitrogen plasma treatment process not only activates carbonaceous materials but also improves their catalytic activity, making this solution both cost-effective and scalable for broader applications in battery manufacturing and carbon dioxide reduction. Interested parties can learn more about this technology by contacting Andreana Leskovjan at leskovjanac@ornl.gov or by calling 865-341-0433.