TECHNOLOGY/BUSINESS OPPORTUNITY High refractive adhesive formulations for use in laser amplifier cladding
ID: IL-13943Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFLLNS – DOE CONTRACTORLivermore, CA, 94551, USA

NAICS

All Other Plastics Product Manufacturing (326199)
Timeline
    Description

    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to develop and commercialize high refractive adhesive formulations designed for laser amplifier cladding applications. The objective is to create optically transparent adhesives with tunable high refractive indices (up to 1.68) and varying shore A hardness, which are essential for effective cladding of laser components while absorbing operational stress. This technology addresses the limitations of existing adhesives in the market, particularly for high refractive index gain media, and is crucial for applications in laser cladding, LEDs, and optical displays. Interested companies should submit a statement of interest, including their corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by email or written correspondence, with further details available on their website.

    Point(s) of Contact
    Files
    No associated files provided.
    Similar Opportunities
    TECHNOLOGY/BUSINESS OPPORTUNITY High Performance Metal Droplet Ejection
    Active
    Energy, Department Of
    The Department of Energy, through the Lawrence Livermore National Laboratory (LLNL), is offering a collaboration opportunity to further develop and commercialize its High-Performance Metal Droplet Ejection technology. This initiative focuses on advancing liquid metal jetting (LMJ), an innovative method for high throughput, powder- and laser-free metal additive manufacturing, which also serves as an alternative for generating high-quality metal powder feedstock. LLNL is seeking industry partners capable of bringing this patented technology to market, emphasizing improved performance and reduced operating costs, with potential applications in metal additive manufacturing and powder production. Interested companies should submit a statement of interest, including relevant corporate expertise and contact information, to LLNL's Innovation and Partnerships Office by email or written correspondence.
    Licensing Opportunity: Low-Cost Hot Melt Adhesives with Improved Adhesive Strength
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a low-cost hot melt adhesive (HMA) with improved adhesive strength, developed by ORNL UT-Battelle LLC. This innovative adhesive technology simplifies processing by allowing application in a solid form that creates strong bonds upon heating and cooling, making it suitable for various applications such as packaging, manufacturing, and electronics. The adhesive exhibits exceptional adhesion to metals like stainless steel and aluminum, while also allowing for easy disassembly, thus enhancing manufacturing efficiency. Interested parties can learn more about this technology by contacting Andreana Leskovjan at leskovjanac@ornl.gov or by phone at 865-341-0433.
    TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials The Department of Energy is offering a technology licensing opportunity for embedded fiber optic sensors in high-temperature materials. This technology utilizes Electric Field-Assisted Sintering (EFAS) to embed fiber optic sensors in high-temperature structural materials for real-time structural health monitoring in extreme environments. It is typically used for real-time monitoring in high-temperature, high-pressure, and radioactive environments, making it crucial for ensuring the integrity and safety of components in industries such as nuclear reactors, aerospace, and high-temperature industrial settings. The technology has undergone testing to verify the integrity and functionality of the embedded fiber and the quality of the bond between the fiber and the metallic matrix. Benefits include achieving successful real-time monitoring, improving bond quality, ensuring scalability, and minimizing signal loss. Applications include nuclear reactor monitoring, aerospace components, automotive systems, energy production infrastructure, and biomedical engineering. The technology is at a Technology Readiness Level (TRL) 3, with key proof-of-concept experiments and parameter optimizations already completed. Interested companies should contact Andrew Rankin at td@inl.gov for more information on this licensing opportunity.
    TECHNOLOGY LICENSING OPPORTUNITY Revolutionary Scintillation Hydro-Gels: SHINE & SHADE for Enhanced Neutron and Antineutrino Detection
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a technology licensing opportunity for Revolutionary Scintillation Hydro-Gels: SHINE & SHADE for Enhanced Neutron and Antineutrino Detection. This groundbreaking solution addresses the global need for advanced, non-hazardous detection technologies in nuclear monitoring and safeguards. SHINE and SHADE are compact, non-hazardous, and high-efficiency gel materials designed for neutron and antineutrino detection respectively. They offer equivalent or higher capture efficiencies compared to current technologies, while being environmentally friendly and cost-effective. Potential applications include domestic nuclear material detection, nuclear reactor monitoring, medical imaging, and more. The technology is currently at TRL 4 and is available for licensing through the Idaho National Laboratory. For more information, contact Andrew Rankin at td@inl.gov.
    Tech Licensing Opportunity: Advanced Bonding Method for Heterogeneous Systems
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking an advanced bonding method for heterogeneous systems. This method aims to seamlessly bond similar and dissimilar materials, maintaining grain structure to minimize disruptions at the bond interface and enhancing material properties and integrity. The method has been demonstrated using Electric Field Assisted Sintering (EFAS) technologies and offers versatility across different manufacturing contexts. It eliminates the use of interlayers or powders, reducing material costs and complexity in the bonding process. The technology has applications in electronics manufacturing, nuclear industry, aerospace industry, ceramics manufacturing, and development of composite materials. The development status is TRL 6. For more information, visit https://inl.gov/technology-deployment/. Contact td@inl.gov for specific discussions on how your business can benefit from this licensing opportunity.
    TECHNOLOGY LICENSING OPPORTUNITY Solid State Nuclear Lasing Sensors: Revolutionizing In-Pile Reactor Measurements
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a technology licensing opportunity for Solid State Nuclear Lasing Sensors. These sensors revolutionize in-pile reactor measurements by enhancing accuracy and spatial resolution. Traditional nuclear reactor power measurement methods have limitations in spatial resolution and potential inaccuracies. This groundbreaking technology utilizes solid state lasing media/crystals to produce laser light, which directly correlates with reactor power and radiation flux. The sensors can be strategically placed within the reactor for real-time power/flux distribution measurements. The technology has applications in commercial nuclear power plants, micro nuclear reactors, and space power and nuclear thermal propulsion reactors. The development status is at TRL 3 - Analytical and experimental proof-of-concept. For more information and collaboration opportunities, please contact Andrew Rankin at td@inl.gov.
    Mirror Substrates
    Active
    Energy, Department Of
    The Department of Energy, through the SLAC National Accelerator Laboratory, is soliciting proposals for the procurement of mirror substrates essential for the LCLS-II-HE project, which supports advanced scientific research in high-energy physics. The procurement includes specific requirements for mirror substrates used in Dynamic X-ray Scattering (DXS), Coherent X-ray Imaging (CXI), and Macromolecular Femtosecond Crystallography (MFX), with detailed specifications outlined in the associated documents. These substrates are critical for enhancing the performance of the laboratory's X-ray optics systems, thereby facilitating cutting-edge research and development. Proposals must be submitted by September 26, 2024, with all inquiries directed to Giang Ngo at giangn@slac.stanford.edu or by phone at 650-926-3975.
    Licensing Opportunity: Limited Center Constraint of Optimal Thickness Build Substrates for Additive Manufacturing
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a technology titled "Limited Center Constraint of Optimal Thickness Build Substrates for Additive Manufacturing," developed by ORNL UT-Battelle LLC. This innovative method addresses significant challenges in additive manufacturing, specifically focusing on substrate design and fixturing to minimize residual stress, distortion, and cracking during the printing process. The technology is applicable across various industries, including aerospace, automotive, and composite manufacturing, ensuring that the final machined part remains intact despite substrate distortion. Interested parties can contact Alex DeTrana at detranaag@ornl.gov or call 865-341-0423 for further information regarding this opportunity.
    TECHNOLOGY TRANSFER OPPORTUNITY: Synthesis and Development of Polyurethane Coatings Containing Fluorine Groups for Adhesive Applications (LAR-TOPS-272)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for the synthesis and development of polyurethane coatings containing fluorine groups for adhesive applications. These coatings have been developed to mitigate the accumulation of insect strikes on airplane wings, which can cause decreased lift, increased drag, and decreased fuel efficiency. The coatings have demonstrated hydrophobicity and a significant reduction in contaminant adhesion, making them suitable for aerospace applications, wind turbine systems, and the automotive industry. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    Tech Licensing Opportunity: Electric Field Assisted Sintering of Bimetallic Materials
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a Tech Licensing Opportunity for Electric Field Assisted Sintering of Bimetallic Materials. This innovative method allows for the joining of dissimilar metals through electric field assisted sintering, providing a superior alternative to traditional welding techniques. The technology is particularly useful in industries such as aerospace, heat transfer, and manufacturing, where combining dissimilar materials is crucial. It enables the fusion of materials like aluminum and stainless steel without the limitations of traditional connectors. This method offers advantages such as efficient joining of dissimilar materials, reduced need for bulky mechanical fasteners, precise control over pressure and temperature, elimination of consumable materials, and a more environmentally friendly and safer approach compared to traditional welding methods. It solves challenges in bonding dissimilar materials, reduces cost and complexity in bimetallic fabrication, overcomes limitations in shape and batch size, and addresses galvanic corrosion issues. The market applications include joining aluminum to stainless steel pipes, aerospace industry applications, heat transfer applications, and heating and cooling coil manufacturing. The technology is currently at TRL 5 and has a provisional patent application. Interested parties can contact td@inl.gov for further information.