TECHNOLOGY TRANSFER OPPORTUNITY: RTV Silicone Sealing Method for Component Interfaces (MSC-TOPS-127)
ID: T2P-JSC-00048Type: Special Notice
Overview

Buyer

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNASA HEADQUARTERSWASHINGTON, DC, 20546, USA

NAICS

Space Research and Technology (927110)

PSC

MISCELLANEOUS ITEMS (9999)
Timeline
    Description

    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology transfer opportunity. The technology involves a method using low-viscosity RTV silicone to form durable seals between polymer bladder and metal bulkhead interfaces for inflatable space habitats. This method addresses concerns about potential failure of the bladder material and overall seal caused by the compressive force of an O-ring. The RTV silicone sealing method has potential commercial applications on Earth and is now available for patent licensing. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.

    Point(s) of Contact
    NASA’s Technology Transfer Program
    Agency-Patent-Licensing@mail.nasa.gov
    Files
    No associated files provided.
    Similar Opportunities
    TECHNOLOGY TRANSFER OPPORTUNITY: AERoBOND: Large-scale Composite Manufacturing (LAR-TOPS-357)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market the AERoBOND technology for large-scale composite manufacturing. This technology offers a method for manufacturing composites at scale with the reliability of co-cure in a bonded assembly process. It utilizes novel epoxy and barrier ply layers to enable the bonding of large, complex composites without the need for redundant fasteners, reducing assembly time and cost. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Low Separation Force Quick Disconnect Device (KSC-TOPS-84)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market the Low Separation Force Quick Disconnect Device developed by NASA's Kennedy Space Center (KSC). This device is designed for transporting pneumatic and cryogenic fluids and eliminates the need for heavy support structures by ensuring low separation force regardless of line pressure. It is particularly valuable for companies dealing with fluid connectors, especially in the aerospace sector. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Robotic Inspection System for Fluid Infrastructures (MSC-TOPS-70)
    Active
    National Aeronautics And Space Administration
    NASA's Technology Transfer Program is seeking companies interested in licensing a Robotic Inspection System designed for surveying deep-sea structures, such as oil platform storage tanks and pipelines. This innovative technology, developed by NASA Johnson Space Center, enables the assessment of material volume, structural integrity, and provides real-time video and sonar capabilities, potentially reducing inspection costs significantly. The licensing opportunity is available on both exclusive and nonexclusive bases, and interested parties can submit their applications through NASA’s Automated Technology Licensing Application System (ATLAS) at the provided link. For further inquiries, companies may contact NASA’s Technology Transfer Program via email at Agency-Patent-Licensing@mail.nasa.gov.
    TECHNOLOGY TRANSFER OPPORTUNITY: Material for Structural Health Monitoring (LAR-TOPS-195)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a novel polymer material developed by NASA Langley Research Center. The material is used as a real-time structural health monitoring sensor, generating a signal in response to a mechanical force. It is highly elastic, allowing for a large range of measurable strain levels, and is highly durable. The material can be manufactured into micro- and/or nanofibers and can be spun directly onto composite panels or embedded within the material. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Synthesis and Development of Polyurethane Coatings Containing Fluorine Groups for Adhesive Applications (LAR-TOPS-272)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for the synthesis and development of polyurethane coatings containing fluorine groups for adhesive applications. These coatings have been developed to mitigate the accumulation of insect strikes on airplane wings, which can cause decreased lift, increased drag, and decreased fuel efficiency. The coatings have demonstrated hydrophobicity and a significant reduction in contaminant adhesion, making them suitable for aerospace applications, wind turbine systems, and the automotive industry. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Hydrophobic Epoxy Coating for Insect Adhesion Mitigation (LAR-TOPS-182)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a hydrophobic epoxy coating for insect adhesion mitigation. This technology, developed by NASA Langley Research Center, is a copolymeric epoxy coating loaded with a fluorinated aliphatic chemical species and nano- to microscale particle fillers. The coating is designed to prevent accumulation of insect strike remains on aerodynamic surfaces, improving aircraft efficiency. It can also be used in industries such as automotive and wind energy to reduce insect residue adherence. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided with these potential licenses. For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247). This technology provides a methodology to measure damage onset and growth in composite structures during fatigue loading. It combines thermal and acoustic emission nondestructive evaluation techniques to detect damage formation and growth. The technology can be used for improved safety and performance of composite structures during their life cycle. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Cryogenic Selective Surfaces (KSC-TOPS-59)
    Active
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market cryogenic selective surfaces. These surfaces, developed as thermal control coatings, have the potential to reflect essentially all solar radiation in the space environment. They can be used to keep cryogenic fuel and oxidizers cold enough for long-term storage in space and support the operation of low-temperature devices and systems on spacecraft. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Portable Science Enclosure Features Unique Innovations (MSC-TOPS-126)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a portable science enclosure system for science experiments conducted aboard the International Space Station (ISS). This technology allows users to safely manipulate objects of study within a transparent enclosure and can support experiments requiring Biosafety Level 2 containment. The enclosure features innovative protective boundary layer designs that may be transferable to other containment systems. It has a compact, low-profile, rectangular design that is easily stowed and transported. The enclosure system, glove seal, and through-port are available for patent licensing. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Method of Non-Destructive Evaluation of Composites (LAR-TOPS-120)
    Active
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a new Non-Destructive Testing (NDT) method for identifying and characterizing hidden damage in composite materials. This technology, developed by NASA's Langley Research Center, uses trapped energy analysis to detect and characterize damage that was previously obscured. The method requires only single sided access to the test specimen and provides a better understanding of composite damage, which is essential for repair and replacement decisions for aerospace composites. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice.