TECHNOLOGY TRANSFER OPPORTUNITY: Wind Event Warning System (LAR-TOPS-229)
ID: T2P-LaRC-00142Type: Special Notice
Overview

Buyer

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNATIONAL AERONAUTICS AND SPACE ADMINISTRATIONNASA LANGLEY RESEARCH CENTERHAMPTON, VA, 23681, USA

NAICS

Space Research and Technology (927110)

PSC

MISCELLANEOUS ITEMS (9999)
Timeline
    Description

    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a wind event warning system technology developed by NASA Langley Research Center.

    The Wind Event Warning System (WEWS) is a high-energy Doppler LIDAR sensor that provides a practical early warning system for severe changes in the wind vector. It can detect events such as gusts, shear, microbursts, or thunderstorm outflows, allowing for timely prevention of damage to wind turbines or aircraft. Additionally, it can help regulate power draw in the electrical grid by ramping up or down an alternative power source as needed.

    Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS) by visiting the provided link. For more information and inquiries, please contact NASA's Technology Transfer Program via email at Agency-Patent-Licensing@mail.nasa.gov.

    This opportunity aims to promote public awareness of NASA-developed technology products and conduct preliminary market research for potential future licensing opportunities. No follow-on procurement is expected from responses to this notice.

    Point(s) of Contact
    NASA’s Technology Transfer Program
    Agency-Patent-Licensing@mail.nasa.gov
    Files
    No associated files provided.
    Lifecycle
    Similar Opportunities
    TECHNOLOGY TRANSFER OPPORTUNITY: More Reliable Doppler Lidar for Autonomous Navigation (LAR-TOPS-351)
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a more reliable Doppler Lidar for autonomous navigation. This technology, known as Navigation Doppler Lidar (NDL), was pioneered by NASA for precision navigation and executing well-controlled landings on surfaces like the moon. The NDL utilizes the Frequency Modulated Continuous Wave (FMCW) technique to determine the distance to the target and the velocity between the sensor and target. However, the current sensor cannot determine the sign (+/-) of the signal frequencies, resulting in false measurements of range and velocity. NASA has developed an operational prototype of a method and algorithm that works with the receiver to correct this problem. The technology is available for license rights on an exclusive or nonexclusive basis and may include specific fields of use. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information and to express interest, please visit the provided links. No follow-on procurement is expected from responses to this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Small Compound-Wing VTOL UAS (LAR-TOPS-293)
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a Small Compound-Wing VTOL UAS technology. This technology combines vertical takeoff and landing (VTOL) convenience with fixed-wing endurance, making it suitable for flying in adverse environmental conditions. The UAS features a novel three-segment wing design and a controlled-articulation wing system for direct control in different modes of operation. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: LIDAR System Noise Reduction (LAR-TOPS-323)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a LIDAR System Noise Reduction technology. This technology utilizes a laser light source that is azimuthally polarized or has Orbital Angular Momentum (OAM) to overcome noise from solar background and backscatter. It can be used in space-based LIDARs to increase the signal-to-noise ratio (SNR) on the detectors by separating stray light from polarized laser light. The technology also has applications in encrypted communications, navigation, and short-range navigation for Urban Air Mobility (UAM) vehicles. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a technology for Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247). This technology provides a methodology to measure damage onset and growth in composite structures during fatigue loading. It combines thermal and acoustic emission nondestructive evaluation techniques to detect damage formation and growth. The technology can be used for improved safety and performance of composite structures during their life cycle. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Compact Vibration Damper (LAR-TOPS-189)
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a compact vibration damper. This technology, developed by NASA Langley Research Center, is designed to reduce vibration occurring at a fixed frequency. The damper allows for greater range of motion and effectiveness compared to conventional devices. It can be used in various applications such as wind tunnel tests, helicopters, wind turbines, and skyscrapers. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, please visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Control and Tracking for Tethered Airborne Vehicles (LAR-TOPS-40)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking companies interested in obtaining license rights to commercialize, manufacture, and market a technology for control and tracking of tethered airborne vehicles. The technology consists of a hardware and software control system that tracks the flight of kite-like tethered vehicles using a pan-tilt platform, a visible-spectrum digital camera, and tracking control software. The system controls the flight of the vehicle to keep its position on a Figure-8 trajectory, maximizing velocity. NASA is looking for development partners to make the system more robust and user-friendly by testing it in real-world systems. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, contact Langley Research Center. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Reliable Geo-Limitation Algorithm for Unmanned Aircraft (LAR-TOPS-244)
    National Aeronautics And Space Administration
    Special Notice: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a reliable geo-limitation algorithm for unmanned aircraft. This technology, called Safeguard, is developed by NASA Langley Research Center and is designed to detect and prevent unmanned aircraft from flying beyond authorized perimeters and into no-fly zones. Safeguard can be applied to both rotary- and fixed-wing systems and has the potential to comply with pending regulatory directives for geo-limitation in the UAS industry. The technology is an independent avionics equipment that can be easily integrated into any unmanned aircraft. It weighs approximately 1 lb and includes formally verified algorithms to monitor and predict boundary violations. The system operates independently of the UA and any on-board components, such as the autopilot, ensuring separation from non-aviation-grade systems. The perimeter boundaries can be described using polygons, allowing for flexibility in defining boundaries. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided by NASA in conjunction with these potential licenses. For more information, please visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: High-Fidelity Sonic Boom Propagation Tool (LAR-TOPS-329)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market the High-Fidelity Sonic Boom Propagation Tool (LAR-TOPS-329). This tool, developed by NASA's Technology Transfer Program at the NASA Langley Research Center, predicts and mitigates sonic boom levels for supersonic aircraft. It incorporates atmospheric and terrestrial effects, handles aircraft trajectories and maneuvers, and offers an updated approach to accurately predict sonic boom ground signatures. The tool has potential applications in the design and development of next-generation supersonic aircraft, enabling pilots and operators to plan flight paths to reduce noise footprints. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). For more information, visit the NASA Technology Transfer Portal. No follow-on procurement is expected from this notice.
    TECHNOLOGY TRANSFER OPPORTUNITY: Smart Optics Material Characterization System (LAR-TOPS-76)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is soliciting inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a Smart Optics Material Characterization System. This system, developed by NASA's Langley Research Center, is a wireless, open-circuit SansEC sensor that can detect the presence of chemicals without being in contact with them. It uses a unique thin-film design and a chemical reactant to detect specific chemicals in caustic or harsh environments. The sensors are cost-effective and environmentally friendly to manufacture and use. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No funding is provided with these potential licenses. For more information, visit the NASA Technology Transfer Portal.
    TECHNOLOGY TRANSFER OPPORTUNITY: Method of Non-Destructive Evaluation of Composites (LAR-TOPS-120)
    National Aeronautics And Space Administration
    Special Notice NATIONAL AERONAUTICS AND SPACE ADMINISTRATION is seeking inquiries from companies interested in obtaining license rights to commercialize, manufacture, and market a new Non-Destructive Testing (NDT) method for identifying and characterizing hidden damage in composite materials. This technology, developed by NASA's Langley Research Center, uses trapped energy analysis to detect and characterize damage that was previously obscured. The method requires only single sided access to the test specimen and provides a better understanding of composite damage, which is essential for repair and replacement decisions for aerospace composites. Interested parties can submit a license application through NASA's Automated Technology Licensing Application System (ATLAS). No follow-on procurement is expected from this notice.