Licensing Opportunity: Sapphire Isolated Diode (SID)
ID: 2024-09-11_IType: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFORNL UT-BATTELLE LLC-DOE CONTRACTOROak Ridge, TN, 37831, USA
Timeline
    Description

    The Department of Energy is offering a licensing opportunity for a novel technology known as the Sapphire Isolated Diode (SID), developed by ORNL UT-Battelle LLC. This technology addresses the limitations of current thermometry in neutron scattering experiments, enabling accurate temperature measurements below 28K while withstanding high-temperature environments. The SID functions as a heat switch, allowing for a full range of temperature readings, which is crucial for neutron and X-ray scattering research in various scientific facilities. Interested parties can learn more about this technology by contacting Leslie Smith at smithlm@ornl.gov or by phone at 865-341-0373.

    Point(s) of Contact
    Files
    No associated files provided.
    Lifecycle
    Title
    Type
    Similar Opportunities
    Licensing Opportunity: INSET (In-Pile Steady-State Extreme Temperature Testbed)
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for the IN-Pile Steady-State Extreme Temperature Testbed (INSET), a unique vacuum furnace designed for testing materials, sensors, and nuclear fuels at extremely high temperatures and under radiation conditions. This technology is essential for the nuclear reactor and space propulsion industries, as it enables testing at temperatures up to 2300°C, which is critical for the development and qualification of advanced nuclear reactors and nuclear thermal rocket propulsion systems. The INSET furnace, made from low-neutron activation materials, is low-cost (under $15,000) and can be utilized in various irradiation facilities, making it a vital tool for ensuring the durability of materials in extreme environments. For further information, interested parties can contact Eugene R. Cochran at cochraner@ornl.gov or call 865-576-2830.
    Licensing Opportunity: Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a groundbreaking technology titled "Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope." This innovative method allows for the precise control and placement of atomic defects in materials, significantly enhancing applications in quantum photonics, magnetic storage, and catalysis, while overcoming limitations of traditional scanning tunneling microscopes. The technology is applicable to both 2D and 3D materials, enabling scalable atomic-scale manufacturing without damaging the material's atomic content. Interested parties can learn more about this opportunity by contacting Leslie Smith at smithlm@ornl.gov or by calling 865-341-0373.
    INL Innovation Spotlight Precision Enhancement for Thermocouples: A Leap in Measurement Accuracy
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF is seeking Precision Enhancement for Thermocouples. Thermocouples are widely used for temperature measurement in various industries but suffer from accuracy drift over time, especially under high temperatures or radiation. The Idaho National Laboratory (INL) has developed a groundbreaking method to extend the lifespan and accuracy of thermocouples by introducing a precise method of short-range ordering (SRO) on thermocouple wires through ohmic heating. This technology improves the accuracy and lifespan of thermocouples, ensuring high precision in temperature measurement over an extended period. It also reduces the need for frequent replacements, offers a faster calibration process, and can be retroactively applied to existing thermocouples in the field. This innovation has applications in manufacturing, aerospace, energy production, scientific research, healthcare, and pharmaceutical manufacturing. The technology has completed testing and demonstration and is currently at TRL 8. INL offers licensing opportunities for businesses interested in this technology. For more information, contact Andrew Rankin at td@inl.gov.
    INL Innovation Spotlight LVDT Intrinsic Temperature Measurement: Revolutionizing Precision Sensing
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF INL Innovation Spotlight LVDT Intrinsic Temperature Measurement: Revolutionizing Precision Sensing The Department of Energy is seeking innovative solutions for precision sensing in material test reactors. The LVDT Intrinsic Temperature Measurement method improves accuracy by directly sensing internal temperatures, eliminating the need for external thermocouples. This breakthrough technology provides precise and real-time temperature data, enhancing measurement accuracy in irradiation tests and other applications. It also simplifies sensor assembly and improves performance in extreme environments. The benefits include increased measurement accuracy, reduced complexity, improved performance in high-temperature scenarios, and long-term stability. The applications range from medical equipment and manufacturing to aerospace and military systems. The technology is currently at TRL 4 and has a provisional patent application. Interested businesses can engage with INL Tech Partnerships for licensing opportunities and support. For more information, contact Andrew Rankin at td@inl.gov.
    Licensing Opportunity: Real-Time, Rapid and Noninvasive Atomic Lock-On in the Scanning Transmission Electron Microscope
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a groundbreaking technology that enables real-time, rapid, and non-invasive atomic lock-on in scanning transmission electron microscopes (STEM). This innovative procedure allows for ultra-precise targeting of individual atoms with a precision below 20 picometers, significantly enhancing the capabilities of STEM by automating beam experiments and minimizing human error. The technology is particularly relevant for applications in semiconductor manufacturing and materials research, providing benefits such as non-invasiveness, speed, and high precision. Interested parties can learn more about this opportunity by contacting partnerships@ornl.gov or calling 865-574-1051.
    TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Embedded Fiber Optic Sensors in High-Temperature Materials The Department of Energy is offering a technology licensing opportunity for embedded fiber optic sensors in high-temperature materials. This technology utilizes Electric Field-Assisted Sintering (EFAS) to embed fiber optic sensors in high-temperature structural materials for real-time structural health monitoring in extreme environments. It is typically used for real-time monitoring in high-temperature, high-pressure, and radioactive environments, making it crucial for ensuring the integrity and safety of components in industries such as nuclear reactors, aerospace, and high-temperature industrial settings. The technology has undergone testing to verify the integrity and functionality of the embedded fiber and the quality of the bond between the fiber and the metallic matrix. Benefits include achieving successful real-time monitoring, improving bond quality, ensuring scalability, and minimizing signal loss. Applications include nuclear reactor monitoring, aerospace components, automotive systems, energy production infrastructure, and biomedical engineering. The technology is at a Technology Readiness Level (TRL) 3, with key proof-of-concept experiments and parameter optimizations already completed. Interested companies should contact Andrew Rankin at td@inl.gov for more information on this licensing opportunity.
    TECHNOLOGY LICENSING OPPORTUNITY Solid State Nuclear Lasing Sensors: Revolutionizing In-Pile Reactor Measurements
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a technology licensing opportunity for Solid State Nuclear Lasing Sensors. These sensors revolutionize in-pile reactor measurements by enhancing accuracy and spatial resolution. Traditional nuclear reactor power measurement methods have limitations in spatial resolution and potential inaccuracies. This groundbreaking technology utilizes solid state lasing media/crystals to produce laser light, which directly correlates with reactor power and radiation flux. The sensors can be strategically placed within the reactor for real-time power/flux distribution measurements. The technology has applications in commercial nuclear power plants, micro nuclear reactors, and space power and nuclear thermal propulsion reactors. The development status is at TRL 3 - Analytical and experimental proof-of-concept. For more information and collaboration opportunities, please contact Andrew Rankin at td@inl.gov.
    Licensing Opportunity: Cryogenic Belt Driven Sample Changer
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a Cryogenic Belt Driven Sample Changer, developed by ORNL UT-Battelle LLC, aimed at enhancing the efficiency of sample changeouts in cryogenic systems. This innovative technology automates the labor-intensive process of manually loading samples into cryogenic vessels, significantly reducing turnaround time and maximizing sample throughput while minimizing thermal loss. The device is particularly beneficial for industries utilizing closed cycle refrigeration systems, X-ray light sources, and liquid nitrogen, and is characterized by its lightweight design, small footprint, and low operational costs. Interested parties can obtain further information by contacting Leslie Smith at smithlm@ornl.gov or by phone at 865-341-0373.
    TECHNOLOGY LICENSING OPPORTUNITY Electric Current Enhanced Diffusion Welding for Manufacturing High-Temperature Compact Heat Exchangers
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF is offering a technology licensing opportunity for Electric Current Enhanced Diffusion Welding. This new approach aims to manufacture high-temperature compact heat exchangers. The technology overcomes challenges in diffusion welding of high-temperature materials and enables cost-effective fabrication of heat exchangers for applications such as nuclear microreactors and concentrated solar power plants. The benefits include superior grain growth, homogenous diffusion welds, and significant energy savings in manufacturing. The target applications include advanced nuclear reactors, concentrated solar power, and chemical processing plants. The technology is currently undergoing proof-of-concept work and is available for licensing to companies interested in bringing it to the market. For more information, interested companies should contact Andrew Rankin at td@inl.gov.
    TECHNOLOGY LICENSING OPPORTUNITY Revolutionary Scintillation Hydro-Gels: SHINE & SHADE for Enhanced Neutron and Antineutrino Detection
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking a technology licensing opportunity for Revolutionary Scintillation Hydro-Gels: SHINE & SHADE for Enhanced Neutron and Antineutrino Detection. This groundbreaking solution addresses the global need for advanced, non-hazardous detection technologies in nuclear monitoring and safeguards. SHINE and SHADE are compact, non-hazardous, and high-efficiency gel materials designed for neutron and antineutrino detection respectively. They offer equivalent or higher capture efficiencies compared to current technologies, while being environmentally friendly and cost-effective. Potential applications include domestic nuclear material detection, nuclear reactor monitoring, medical imaging, and more. The technology is currently at TRL 4 and is available for licensing through the Idaho National Laboratory. For more information, contact Andrew Rankin at td@inl.gov.