Pulsed Laser Lethality Effects for Missile Defense
ID: MDA242-D004Type: BOTH
Overview

Topic

Pulsed Laser Lethality Effects for Missile Defense

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for the topic of "Pulsed Laser Lethality Effects for Missile Defense" as part of their SBIR 24.2 Annual solicitation. The research focuses on developing a system that can characterize, display, record, and transfer data collected during tests of pulsed laser interactions with materials. The system should be able to measure material properties such as temperature gradients, rates of ablation, vibration, plasma properties, and atmospheric vapor composition. The goal is to provide diagnostic equipment that can be used in material interaction testing with high energy pulsed laser systems. The project will have a Phase I and Phase II, with Phase I proposals expected to demonstrate technical feasibility and a preliminary understanding of the technology. Phase II will involve designing, building, testing, and delivering a prototype system capable of collecting data during Department of Defense tests. The system should be able to process and generate plots of the data, and the raw and processed data must be transferrable. The project has potential dual-use applications, including as a diagnostic test tool for continuous wave laser testing, aid in understanding re-entry vehicle performance, and assessing hypersonic material testing and performance. The solicitation is open until June 12, 2024. For more information, visit the solicitation agency website.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" in their SBIR 24.4 Annual solicitation. The Defense Advanced Research Projects Agency (DARPA) is specifically interested in technologies related to additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. They are also looking for advancements in the understanding and characterization of novel fluid dynamics that enhance propulsion performance. The objective is to achieve coherence between a cooperating set of commodity devices, resulting in increased thrust to weight, fuel efficiencies, and propellant mass fractions. This solicitation is open for Phase II proposals only, and Phase I proposals will not be accepted or reviewed. Phase II will involve designing and evaluating enabling technologies at the system and subsystem level, as well as advancing modeling and simulation tools. Physical hardware proposals should include development, installation, integration, demonstration, and/or test and evaluation of the proposed prototype system. Software or advanced tool development proposals should have a development approach anchored in the physics of the problem and ways to validate the software against existing test data. The Phase II effort consists of a base period of 12 months and an option period of 12 months. Phase III of this project will focus on transition and commercialization of the developed technologies. The proposer is required to obtain funding from private sector or non-SBIR Government sources to develop the prototype software into a viable product or non-R&D service for sale in military or private sector markets. The technologies developed under this topic will have applications in both commercial and military sectors, including commercial transportation, high-speed delivery, and responsiveness to fluidic environments. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.4 Annual topic page on the SBIR website (https://www.sbir.gov/node/2492697). The solicitation is currently open, and the application due date is March 31, 2025.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website here.
    DOD STTR 24.D Annual - Optical-Atomic System Integration & Calibration (OASIC)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Optical-Atomic System Integration & Calibration (OASIC)" as part of the Small Business Innovation Research (SBIR) program. The objective is to create a user facility for an atom-based quantum testbed that can prototype, validate, and benchmark nanophotonic, optoelectronic, and electronic components and sub-systems. The goal is to enable the development of scalable, low-SWaP atom-based quantum sensors, clocks, computing architectures, and other integrated or chip-scale quantum technologies. The solicitation emphasizes the need for rigorous testing and evaluation procedures compatible with the performance requirements of atom-based quantum devices. The Phase I of the project will focus on designing and analyzing the performance and operation of the proposed testbed user facility, as well as developing an operation and business plan. The Phase II will involve constructing and demonstrating the quantum testbed based on the Phase I design. The project duration for Phase I is 4 months, and for Phase II is 24 months. The solicitation encourages the development of integrated, low-SWaP quantum systems for applications in defense and commercial markets. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Digital Projection Close Quarters Sight (DP-CQS)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the Digital Projection Close Quarters Sight (DP-CQS) as part of the SBIR 24.4 Annual program. The objective of this topic is to develop applied research for a compact, close-quarters sight that utilizes a digital screen projected onto a transparent surface for the user to look/aim through. The DP-CQS should have multiple user-selectable and user-configurable ballistic reticles, eliminate mechanical adjustors, and improve system stability under thermal and mechanical shock. The feasibility study should consider technologies to eliminate light scattering and minimize color shift. The DP-CQS should have a low Size Weight and Power (SWaP) with a 72-hour continuous battery run time. The Phase I of the project involves conducting a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military weapon systems and the competitive shooting market. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Digital Projection Close Quarters Sight (DP-CQS)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Digital Projection Close Quarters Sight (DP-CQS)" as part of their SBIR 24.4 Annual program. The objective of this topic is to develop applied research for a compact, close-quarters sight that utilizes a digital screen projected onto a transparent surface for the user to look/aim through. The technology should provide multiple user-selectable and user-configurable ballistic reticles, eliminate mechanical adjustors, and improve system stability under thermal and mechanical shock. The feasibility study should explore options for a 1x direct view optic with at least 3 different digital reticle configurations, low Size Weight and Power (SWaP), and a 72-hour continuous battery run time. The DP-CQS should also communicate with external devices for range/ballistic data and user-configured reticles. The Phase I of the project involves conducting a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications for this technology include military weapon systems and the competitive shooting market. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Autonomous Optical Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight in remote locations where proper test infrastructure is unavailable. The Autonomous Optical Sensor (AOS) system will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities. The sensor will operate autonomously for an extended period with either a battery or renewable energy source and wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated AOS configuration that includes various types of optical sensors and develop an AI framework to manage the system. Phase II will involve creating a prototype of the AOS and refining the integrated system design for optimal performance. The potential impacts of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit a proposal, visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" in their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions in police and first responder communications systems caused by RF interference, and improving communication between maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Quantum Enhanced RF Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Quantum Enhanced RF Components" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to utilize quantum phenomenology to create sensitive Radio Frequency (RF) components that can enhance the performance of current communication systems. By lowering the noise levels of these components, weaker signals can be detected, potentially enabling the radar detection of previously unseen targets. The research will focus on developing quantum-based RF components such as amplifiers, mixers, and oscillators that can be integrated with existing systems. The project will be conducted in two phases. Phase I will involve delivering a series of reports outlining the feasibility of the RF component using mathematical models for quantum phenomena. Phase II will require the delivery of a working prototype and a report documenting the prototype's capabilities and any necessary control software. The potential applications of this technology include enhancing the efficacy of security systems that rely on RF detection, minimizing disruptions and identifying the source of RF interference in police and first responder communications systems, and improving communication and navigation capabilities in maritime and aviation vehicles. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, interested parties can visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" as part of the SBIR program. The research focuses on advancements in additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. The objective is to deliver combat power and lethality by achieving responsiveness, intensity, and the ability to deliver munitions at range. The technology sought includes propulsion solutions using high-density, storable, and rapidly loadable propellants, as well as advancements in understanding and characterizing novel fluid dynamics for enhanced propulsion performance. The solicitation is open for Phase II proposals only, and proposers must demonstrate feasibility and potential military or commercial applications. The Phase II effort consists of a base period of 12 months and an option period of 12 months. The ultimate goal is to transition and commercialize the developed technologies for both military and commercial applications, particularly in the areas of manned or unmanned air and space platforms.
    DOD SBIR 24.4 Annual - Thermal Reflex Sight
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a Thermal Reflex Sight (TRS) for use by Special Operations Forces in short to medium range target engagement scenarios. The TRS should be a weapon mounted capability that combines a long wave infrared thermal weapons sight with a reflex day optic sight, allowing for targeted engagements in varied lighting conditions. The TRS should be optimized for short to medium range engagements and should not be a "shoot from the hip" sight. The objective of Phase I is to conduct a feasibility study to assess the possible options that satisfy the requirements. Phase II involves the development, installation, and demonstration of a prototype system. The resulting system could have applications in various military and law enforcement settings. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.