Wireless, Wearable Personal Metabolic Sensor
ID: DHA241-D002Type: BOTH
Overview

Topic

Wireless, Wearable Personal Metabolic Sensor

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for a wireless, wearable personal metabolic sensor. The sensor should accurately measure oxygen consumption (VO2) and carbon dioxide production (VCO2) and provide immediate feedback to improve fitness, refueling practices, body composition, and readiness. The sensor should be low-cost, lightweight (<300g), and capable of on-demand measurements. It should also have a battery life of at least 14 hours and an error rate of <10% for VO2 and VCO2 measurements. The Phase I of the project requires a proof-of-concept prototype, while Phase II involves the development of two prototypes for field use. The technology has potential applications in military training, wellness centers, and commercial fitness facilities. The deadline for proposals is February 21, 2024. For more information, visit the solicitation link.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Water Tester at Point of Need
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a water tester at the point of need. The objective of this solicitation is to develop applied research for an innovative capability to improve water surveillance in field conditions. The goal is to create a rugged and compact field instrument that can provide microbiological and metal detection capabilities to reduce health risks to personnel. The water tester should be able to analyze for total coliforms, Escherichia coli, arsenic, lead, copper, and cyanide, providing rapid results within 4 hours. The equipment must be compact, durable, and able to fit in carry-on luggage, weighing no more than 25 pounds. The project will be conducted in two phases: Phase I involves a feasibility study, and Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military use, environmental programs, emergency response teams, and other federal directorates. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link: here.
    DOD SBIR 24.4 Annual - Precision Control Lens Eye Tracking Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of precision contact lens eye tracking sensors for Extended Reality (XR) interaction, training optimization, and cognitive monitoring. The objective is to enhance command and control capabilities in XR environments, optimize training, and enable real-time adaptive systems. Current eye tracking technologies lack the necessary precision and ruggedness for military operations. The use of contact lens-based eye tracking would allow for operational integration into various dynamic scenarios, including manned and unmanned air operations and ground vehicle systems. The proposed project includes feasibility studies, the development of a working prototype, and human factors feasibility studies. The technology has potential applications in academic research, health monitoring, and various market applications. The project is open for proposals until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Low Cost Persistent Multi Sensor Surveillance
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Low Cost Persistent Multi Sensor Surveillance" as part of their SBIR program. The objective of this topic is to develop environmentally hardened sensor nodes that can persistently monitor Radio Frequency (RF), weather conditions, and/or personnel access of remote islands leased on the Kwajalein Atoll for the U.S. Army's Reagan Test Site (RTS). The solutions should be independent of external power sources or communications networks, as there are no cellular or Wi-Fi communications, nor power source, in these areas. The solutions must also be capable of operating in harsh environmental conditions, including heat, humidity, regular rainfall, salt spray, and high atmospheric salinity. The data collected by these sensor nodes will be used for situational awareness, safety, security, and mission planning and support. The solicitation is open for both full or partial solutions, and Phase I proposals with a cost of up to $250,000 for a 6-month period of performance are being accepted. Phase I will involve researching and developing the system/network architecture, designing the hardware components, and proposing power source designs and networking techniques. By the end of Phase I, the awardee should have detailed descriptions of the proposed technologies. In Phase II, the awardee will produce a single prototype that demonstrates the capabilities and methodologies at a minimum of TRL4. They will also develop a user interface and display for situational awareness of sensor control and monitoring. The potential applications of this technology include wireless remote sensing for public safety, health, fitness, and wildlife dual-usages. Some examples of dual uses of remote sensing include anti-poaching efforts, remote environmental sensors enabled by low-Earth orbit satellites, wildfire early recognition sensor systems, agriculture and crop performance monitoring, and urban pollution source detection. For more information and to submit proposals, interested parties can visit the DOD SBIR program website. The solicitation is currently open, and the application due date is March 31, 2025. References: https://www.sciencedirect.com/science/article/abs/pii/S0927775722021823 https://www.sciencedirect.com/science/article/pii/S1877050914009831 http://www.ijpe-online.com/EN/10.23940/ijpe.09.5.p419.mag Keywords: sensors, nodes, Radio Frequency (RF), Reagan Test Site (RTS)
    DOD SBIR 24.4 Annual - Water Tester at Point of Need
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a water tester at the point of need. The objective of this research topic is to improve water surveillance by developing a rugged and compact field instrument capable of providing microbiological and metal detection capabilities. The goal is to reduce both short- and long-term health risks to personnel. The water tester should be able to analyze for total coliforms, Escherichia coli, arsenic, lead, copper, and cyanide, providing rapid results in less than 4 hours. The equipment must be compact, durable, and able to fit in a carry-on piece of luggage, weighing no more than 25 pounds. The project will be conducted in two phases: Phase I involves a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military use for Special Operations Forces and conventional forces, as well as environmental programs, emergency response teams, and other federal directorates. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation on grants.gov.
    DOD SBIR 24.4 Annual - Lightweight Longwave Bolometer Sensor Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Lightweight Longwave Bolometer Sensor Components" as part of the SBIR program. The objective of this topic is to develop components that enable low size, weight, and power (SWAP) thermal bolometer-type longwave thermal sensor payloads. These components should have equal or better performance than current commercial offerings while driving down SWAP. The components of interest include lens, focal plane, and readout and processing embedded hardware. The components should be ready for integration into a camera module by the end of Phase II. Thermal longwave infrared (LWIR) capabilities are crucial for many Army applications, especially for small Unmanned Aircraft Systems (UAS). However, the size, power, and weight constraints often limit the performance of these sensors. This topic aims to develop components that reduce the weight of thermal payloads while increasing their capabilities and keeping unit costs low. The project will have a Phase I and Phase II, with Phase I proposals accepting a cost of up to $250,000 for a 6-month period of performance. During Phase I, firms should design a proposed component with stakeholder input, analyze the SWAP-C impact of the component, and discuss how it will support the objective sensor payload. Phase II will involve completing the component design, fabricating, testing, and characterizing the component for integration into a lightweight sensor payload. Firms will also refine the design, define relevant interfaces, and lay out a high-level plan for integration. The potential applications of this research include smartphone camera augmentation, UAV camera augmentation, home security systems, and climate tech development. The project references academic research on bolometer manufacturing methods and the efficacy of leveraging colloidal quantum dots (QDs) for IR light sensing. Military contractors have also contributed to the research in the LWIR sensor and bolometer manufacturing spaces. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities page. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website here.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a plausible design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype that demonstrates the desired capabilities. The project aligns with the Army's smart sensing initiatives and aims to provide an innovative alternate means of low probability of detection (LPD) and low probability of interception (LPI) communications. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Innovative Solutions for Ethylene Oxide Mitigation Used in Sterilization Processes (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for innovative solutions to mitigate ethylene oxide (ETO) used in sterilization processes. The goal is to promote environmentally friendly and sustainable practices in the field of sterilization technologies. ETO is commonly used in the manufacturing of medical devices for its effective sterilization properties, but its use raises environmental and health concerns due to its potential carcinogenicity. The DOD is specifically looking for advancements in sterilization technologies that prioritize environmental sustainability and health by minimizing or eliminating ethylene oxide emissions during medical device sterilization. The technology should be compatible with current ETO sterilization equipment and processes, and should not require significant alterations to existing setups. The proposal should include a plan for FDA clearance and EPA review, and the technology should be capable of operating continuously without becoming the rate-limiting step in current manufacturing processes. The Phase I of the project requires a feasibility study and documentation demonstrating the technical viability and strategic planning of the proposed solution. Phase II focuses on comprehensive development and refinement of the ETO byproduct mitigation solution, including prototype development, efficacy testing, regulatory compliance, and a scale-up strategy or commercialization plan. Following successful development, the technology has potential applications in various industries reliant on ETO sterilization, including medical, pharmaceutical, food, laboratory, veterinary, cosmetic, and textile sectors. The ultimate goal is to transition the ETO mitigation solution from development to widespread implementation across diverse industries, contributing to a safer and more sustainable future for medical device manufacturing. The proposal submission deadline is March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov.
    DOD SBIR 24.4 Annual - Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program focused on the topic of "Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)". The Defense Health Agency is the branch responsible for this topic. The objective is to develop a simple-to-use sample collection and processing method capable of preparing an adequate specimen for the identification and accurate detection of specific fungal and/or bacterial species commonly associated with complex battlefield wound infections. The technology should be suitable for use in far-forward deployed environments. The current diagnostic capabilities for battlefield wound infections are limited and time-consuming, resulting in delays in treatment and medical intervention decisions. The proposed technology should enable rapid diagnosis (less than 2 hours) at the point of injury, improving patient outcomes and reducing morbidity and mortality. The technology should be compatible with wet/dry environments, require minimum logistical support, and be stable in long-term storage. It should also be easy to use with little training and provide unambiguous primary output. The technology must include a plan for FDA clearance and should align with CLIA-waived complexity standards. The SBIR program consists of three phases: Phase I focuses on demonstrating scientific and technical feasibility, Phase II involves refining the technology and integrating it with a rapid diagnostic platform, and Phase III aims to secure FDA approval and transition the technology for commercial use in both civilian and military settings. The proposal submission deadline is March 31, 2025. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.
    DOD SBIR 24.4 Annual - Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program focused on the topic of "Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)". The Defense Health Agency is the specific branch of the DOD overseeing this topic. The objective is to develop a simple-to-use sample collection and processing method that can accurately detect specific fungal and bacterial species commonly associated with complex battlefield wound infections. The technology should be capable of preparing an adequate specimen for identification and detection in far-forward deployed environments. The current diagnostic capabilities for battlefield wound infections are limited and time-consuming, leading to delays in treatment and medical intervention decisions. The proposed technology should provide rapid diagnostics with a sample collection-to-result time of less than 2 hours, improving patient outcomes and reducing morbidity and mortality. The technology should be compatible with wet/dry environments, require minimum logistical support, and be stable in long-term storage. It should also be easy to use with little training and provide unambiguous primary output. The technology must include a plan for FDA clearance and should align with CLIA-waived complexity standards. The SBIR program consists of three phases: Phase I focuses on demonstrating scientific and technical feasibility, Phase II involves refining the technology and integrating it with a rapid diagnostic platform, and Phase III aims to secure FDA approval and commercialize the technology for both civilian and military settings. The government may propose further harmonization of the technology with other relevant products to meet additional DoD requirements. The solicitation is open until March 31, 2025. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.