Smart Exhaust Waste Heat Recovery Unit (SEWHRU)
ID: N24A-T009Type: Phase I
Overview

Topic

Smart Exhaust Waste Heat Recovery Unit (SEWHRU)

Agency

Department of DefenseN/A

Program

Type: STTRPhase: Phase IYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program focused on the topic of "Smart Exhaust Waste Heat Recovery Unit (SEWHRU)". The objective of this research is to develop and demonstrate a self-cleaning SEWHRU for internal combustion engines' flue gas, with temperatures ranging from 500 to 1200 °F. The technology aims to capture and transfer at least 50% of the heat from the exhaust flue gas to an intermediate working fluid, which can then be converted into useful work.

    The SEWHRU is intended for use in electric generation and/or heating and cooling processes. By effectively recovering and converting waste heat, the thermal efficiency of diesel engines can be increased, resulting in reduced fuel consumption for equivalent work. The SEWHRU design should address several challenges faced by existing waste heat recovery units (WHRUs), such as controlled flow rates of flue gas and working fluid, flue gas treatment, even distribution of flue gas, protection against overheating and condensation, counteracting pressure losses, and modular design for maintainability.

    The Phase I of the project involves developing a concept for the SEWHRU, evaluating its economic and technical feasibility, and demonstrating the design through modeling, analysis, and benchtop experimentation. The Phase II focuses on developing, fabricating, delivering, and testing a prototype of the WHRU at an appropriate scale, validating analytic models, and evaluating scalability up to 4000 Brake Horse-Power (BHP) marine diesel engines. The Phase III aims to assist the Navy in transitioning the technology to Navy use and developing a transition strategy for production-level manufacturing capabilities.

    The technology has potential applications in the internal and external combustion engine industry, electric power generation industry, and other manufacturing or production processes that generate low-grade waste heat. It can lead to lower operation and production costs while reducing environmental impact.

    For more information and to access the solicitation, visit the DOD SBIR/STTR Opportunities website: link.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - YTC Full Load Cooling
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "YTC Full Load Cooling" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to develop modernized data processing techniques to accurately assess the cooling capabilities of military vehicles with electronically controlled powertrains. The current testing methodologies and data processing techniques for fluid temperature data in critical systems of military vehicles are outdated and cannot be used for assessing vehicles with electronically controlled transmissions. The goal is to modernize the test methodology and utilize synthetic data generation techniques to accurately characterize the performance of the vehicle, even in extreme environments. The research will involve developing a new Full Load Cooling (FLC) test methodology, mathematical formulae for data processing, and a methodology to characterize powertrain derating. The project will be conducted in two phases, with Phase I focusing on developing the initial plan and Phase II refining the methodology and developing a software program for data processing. The research has potential applications in the automotive industry and can contribute to the development of modeling and simulation capabilities for engine and energy cooling. The project duration is from 4QFY24 to 3QFY26, and interested parties can find more information and submit proposals on the DOD SBIR website.
    DOD SBIR 24.4 Annual - Atmospheric Water Extraction Plus (AWE+)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Atmospheric Water Extraction Plus (AWE+)" as part of its SBIR program. The objective of this solicitation is to develop novel atmospheric water extraction technology with potential for energy use below 100Wh electric per liter of water generated across a wide range of environments. The technology should be integrated into a proof-of-concept prototype producing potable water with a clear path to full-size implementation. The DOD has a critical need to reduce water resupply requirements for mobile and self-sufficient operations. The development of AWE+ technology will have important tactical implications, reducing casualties and costs in forward operating environments. The goal is to provide potable water for a range of military needs by developing low-power, distributable systems that can provide water anywhere, anytime, and without the need for any external liquid water source. DARPA, the Defense Advanced Research Projects Agency, is specifically seeking teams with innovative means of releasing water from sorbents which is cyclically stable and has very low energy requirements. The technology should be able to produce water with not more than 100Wh electricity per liter of water produced, and not more than 100Wh thermal energy per liter of water produced. Proposals should outline a plan for reaching these energy metrics and provide an estimate for the range of environmental conditions at which the devices could operate. The project will be conducted in two phases. Phase I is a six-month effort focusing on proof-of-concept material and release mechanism development. Phase II is a 24-month effort with a base period of nine months, followed by two option periods. The performers will be expected to demonstrate functionality of their water capture and release mechanisms in a laboratory environment, producing at least 100mL of potable liquid water over a six-hour period with minimal loss in performance. The ultimate goal of this effort is to demonstrate AWE capable of meeting potable water needs for expeditionary scenarios with extremely high efficiency. Phase III will focus on transition within the DoD/military and further commercialization of the technology. Potential applications include satisfying military expeditionary water needs, reducing logistical footprint and vulnerability of supply lines, and developing next-generation dehumidification systems for residential and commercial HVAC. Keywords: Atmospheric water extraction, atmospheric water capture, atmospheric water harvesting, sorbent materials, advanced manufacturing. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities website. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
    DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" in their SBIR 24.4 Annual solicitation. The Defense Advanced Research Projects Agency (DARPA) is specifically interested in technologies related to additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. They are also looking for advancements in the understanding and characterization of novel fluid dynamics that enhance propulsion performance. The objective is to achieve coherence between a cooperating set of commodity devices, resulting in increased thrust to weight, fuel efficiencies, and propellant mass fractions. This solicitation is open for Phase II proposals only, and Phase I proposals will not be accepted or reviewed. Phase II will involve designing and evaluating enabling technologies at the system and subsystem level, as well as advancing modeling and simulation tools. Physical hardware proposals should include development, installation, integration, demonstration, and/or test and evaluation of the proposed prototype system. Software or advanced tool development proposals should have a development approach anchored in the physics of the problem and ways to validate the software against existing test data. The Phase II effort consists of a base period of 12 months and an option period of 12 months. Phase III of this project will focus on transition and commercialization of the developed technologies. The proposer is required to obtain funding from private sector or non-SBIR Government sources to develop the prototype software into a viable product or non-R&D service for sale in military or private sector markets. The technologies developed under this topic will have applications in both commercial and military sectors, including commercial transportation, high-speed delivery, and responsiveness to fluidic environments. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.4 Annual topic page on the SBIR website (https://www.sbir.gov/node/2492697). The solicitation is currently open, and the application due date is March 31, 2025.
    DOD SBIR 24.4 Annual - Helicopter Expedited Refueling Operations (HERO)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Helicopter Expedited Refueling Operations (HERO)" as part of the SBIR program. The objective of this solicitation is to develop solutions that increase the efficiency of setup, refueling operations, and disassembly of forward arming and refueling points (FARP) for rotary-winged assets. The goal is to reduce the amount of time these assets are unavailable for ground combat operations and decrease the likelihood of enemy detection and attack on the FARP. Currently, FARPs are vulnerable to enemy attack and require a significant number of personnel and equipment. Refueling times can take hours, and the FARP's limited defensive capabilities make mobility essential. The Army is looking for solutions that expedite the aggregation/setup/breakdown of FARP vehicles, decrease refueling times, improve pumping systems and equipment, and decrease aircraft wait times. The solicitation is open for proposals until March 31, 2025. The Phase I of the project requires Direct to Phase II (DP2) proposals that demonstrate scientific and technical merit, feasibility, and potential commercial applications. Phase II involves refining the design and creating a Technology Readiness Level (TRL) 6 prototype/model/system. Phase III focuses on commercialization objectives and may involve low-rate production and testing. The SBIR program provides funding for small businesses to develop innovative solutions that address specific research topics. In this case, the focus is on improving the efficiency and safety of helicopter refueling operations in military settings.
    DOD SBIR 24.4 Annual - Helicopter Expedited Refueling Operations (HERO)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Helicopter Expedited Refueling Operations (HERO)" as part of its SBIR program. The objective of this solicitation is to develop solutions that increase the efficiency of setup, refueling operations, and disassembly of forward arming and refueling points (FARP) for rotary-winged assets. The goal is to reduce the amount of time these assets are unavailable for ground combat operations and decrease the likelihood of enemy detection and attack on the FARP. Currently, FARPs are vulnerable to enemy attack and require a significant number of personnel and equipment. The Army is looking for solutions that expedite the aggregation, assembly, setup, and breakdown of FARP vehicles, hoses, and equipment. Additionally, they are interested in solutions that decrease aircraft refueling times, improve pumping systems, valves, hoses, and other FARP equipment, and decrease aircraft wait/loiter times. The solicitation is open for proposals until March 31, 2025. The Phase I of the project requires Direct to Phase II (DP2) proposals that demonstrate scientific and technical merit, feasibility, and potential commercial applications. Phase II involves refining the design and creating a Technology Readiness Level (TRL) 6 prototype/model/system. Phase III focuses on commercialization objectives and may involve developing a manufacturing-ready product design and engaging in laboratory or operational testing. The Army is particularly interested in solutions that integrate designated Army open standards, consider cost, and adapt to individual Soldiers' needs or scenarios. The funding specifics and performance goals will be provided in the solicitation document available on the DOD SBIR website.
    DOD SBIR 24.4 Annual - Tactical Micro-grid Standard Add-on for Power Sources
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Tactical Micro-grid Standard Add-on for Power Sources" as part of their SBIR 24.4 Annual solicitation. The goal of this research is to address the need for reliable and flexible power solutions in dynamic and unpredictable environments, including directed energy. The objective is to enable the seamless integration of diverse power sources, such as renewable energy, generators, and storage systems, into a cohesive network. This would create resilient, self-sustaining power infrastructure capable of providing uninterrupted energy supply, enhancing operational efficiency, and reducing reliance on vulnerable external grids. The solicitation is open for Phase I proposals with a budget of up to $250,000 for a 6-month period of performance. Phase I involves analyzing the current state of power infrastructure, conceptualizing the design, and developing a feasibility study. Phase II will focus on building a fully functional prototype. The potential applications of this technology include urban and critical infrastructure, remote/rural communities, electric vehicles, autonomous vehicles, and data centers. The implementation of the Tactical Micro-grid Standard has the potential to establish a modular, efficient, and more effective smart power microgrid.
    DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" as part of the SBIR program. The research focuses on advancements in additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. The objective is to deliver combat power and lethality by achieving responsiveness, intensity, and the ability to deliver munitions at range. The technology sought includes propulsion solutions using high-density, storable, and rapidly loadable propellants, as well as advancements in understanding and characterizing novel fluid dynamics for enhanced propulsion performance. The solicitation is open for Phase II proposals only, and proposers must demonstrate feasibility and potential military or commercial applications. The Phase II effort consists of a base period of 12 months and an option period of 12 months. The ultimate goal is to transition and commercialize the developed technologies for both military and commercial applications, particularly in the areas of manned or unmanned air and space platforms.
    DOD SBIR 24.4 Annual - Innovative Solutions for Ethylene Oxide Mitigation Used in Sterilization Processes (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for innovative solutions to mitigate ethylene oxide (ETO) used in sterilization processes. The goal is to promote environmentally friendly and sustainable practices in the field of sterilization technologies. ETO is commonly used in the manufacturing of medical devices for its effective sterilization properties, but its use raises environmental and health concerns due to its potential carcinogenicity. The DOD is specifically looking for advancements in sterilization technologies that prioritize environmental sustainability and health by minimizing or eliminating ethylene oxide emissions during medical device sterilization. The technology should be compatible with current ETO sterilization equipment and processes, and should not require significant alterations to existing setups. The proposal should include a plan for FDA clearance and EPA review, and the technology should be capable of operating continuously without becoming the rate-limiting step in current manufacturing processes. The Phase I of the project requires a feasibility study and documentation demonstrating the technical viability and strategic planning of the proposed solution. Phase II focuses on comprehensive development and refinement of the ETO byproduct mitigation solution, including prototype development, efficacy testing, regulatory compliance, and a scale-up strategy or commercialization plan. Following successful development, the technology has potential applications in various industries reliant on ETO sterilization, including medical, pharmaceutical, food, laboratory, veterinary, cosmetic, and textile sectors. The ultimate goal is to transition the ETO mitigation solution from development to widespread implementation across diverse industries, contributing to a safer and more sustainable future for medical device manufacturing. The proposal submission deadline is March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov.
    DOD SBIR 24.4 Annual - Thermal Barrier Minimal Deflection Handguard
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a research topic titled "Thermal Barrier Minimal Deflection Handguard" under the SBIR program. The research aims to investigate the thermodynamics involved in designing an over-the-suppressor handguard and developing a toolless mounting system. The handguard should have a high thermal conductivity to allow rapid fire while maintaining a surface temperature below discomfort levels. The research should also focus on heat dissipation, insulation, materials, weight, and ergonomics of the handguard. The objective is to develop a handguard that can withstand high temperatures without decomposing or releasing toxic chemicals. Additionally, a toolless mounting system is required for easy removal and maintenance of the piston system. The handguard should remain rigid and return to within ≤ 0.5 milliradians of mounting center when force is applied and removed by the shooter. The proposed handguard should be between 9 and 11 inches in length. The Phase I of the project involves conducting a feasibility study to assess the possibilities that meet the specified requirements. The Phase II focuses on developing, installing, and demonstrating a prototype system. The technology developed through this research can have applications in various military small arms weapons where user interface of a handguard and heat mitigation is a concern. The project has a funding duration until March 31, 2025. For more details and to submit proposals, visit the solicitation agency's website at [solicitationagencyurl].
    DOD SBIR 24.4 Annual - Multisystem Mobile Corrosion Unit
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a research topic titled "Multisystem Mobile Corrosion Unit" as part of their SBIR program. The objective of this topic is to develop a deployable solution for the Army's major corrosion issue, allowing for repairs in austere environments while in the field. The solution should include capabilities such as laser ablation, corrosion preventative coating application, cold spray, plasma blast, welding, and more. The project will consist of two phases, with Phase I accepting proposals for up to $250,000 for a 6-month period to develop a proof-of-concept prototype. Phase II will involve developing a deployment-ready multisystem corrosion unit. The technology has potential applications in industries such as automotive, aircraft, construction, agriculture, and power and energy. The project duration is not specified, and interested parties can find more information and submit proposals on the DOD SBIR website.