DOD SBIR 24.1 BAA

Active
No
Status
Closed
Release Date
November 29th, 2023
Open Date
January 3rd, 2024
Due Date(s)
February 21st, 2024
Close Date
February 21st, 2024
Topic No.
N241-056

Topic

Autonomous, Mission-based Traffic Engineering

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024

Summary

The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous, Mission-based Traffic Engineering" as part of their SBIR 24.1 BAA solicitation. The Navy branch is specifically interested in developing autonomous traffic prioritization mechanisms and orchestration to align network priorities with the Commander's Intent, especially during contested operations. The objective is to identify different types of traffic, associate them with specific platforms and missions, enable the Commander to prioritize these functions, and translate the prioritization into network policies for end-to-end delivery of mission-critical traffic. The main technical challenges include mapping Commander's intent into machine-readable data and combining machine representations of policies. The project will be conducted in three phases. In Phase I, a framework/approach to address the challenges will be developed, along with a proposed set of benchmarks for assessing performance. Phase II involves implementing the framework using representative data sets and demonstrating how it correctly interprets intent and translates it into traffic engineering policies. Phase III focuses on integration and transition into ADNS, with potential commercial applications in the development of prioritization mechanisms for mission-critical traffic in the commercial sector. The project duration and funding specifics are not provided in the document. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.1 BAA topic link: link.

Description

OUSD (R&E) CRITICAL TECHNOLOGY AREA(S): Integrated Network Systems-of-Systems; Trusted AI and Autonomy

 

OBJECTIVE: Develop autonomous, mission-based traffic prioritization mechanisms/techniques and orchestration to ensure network priorities are aligned with the Commander’s Intent – especially during contested operations when there will not be sufficient network resources to satisfy all of the operational needs.

 

DESCRIPTION: Tactical networks typically contain an admixture of critical, essential, and non-essential traffic. Criticality of the traffic depends on the types of missions that are currently being executed, mission phase, etc. and is, consequently, highly dynamic. Reference (1) outlines command and control (C2) constructs for the U.S. Navy and Army. These constructs have different warfare commanders, functional commanders, and coordinators – with different network applications / priorities – that must be synchronized to achieve operational objectives. The Navy seeks technical solutions for (1) identifying different types of traffic, (2) associating each traffic type with specific platforms as well as functions/missions, (3) enabling the Commander to prioritize these functions/missions, and (4) translating the Commander’s prioritization into network policies that can be implemented across the network to ensure, to the extent possible, end-to-end delivery of mission-critical traffic.

 

There are two main technical challenges that must be solved:

(1). Reliable mapping of Commander’s intent and mission objectives into structured data forms that can be combined with policy representations and reasoned with by machines. Supervised Natural Language Processing (NLP) training requires more exemplars than may be available given the highly dynamic nature of Commander’s intent or mission objectives. Machine representations need to precisely capture the original human meaning within the intent as well. Reference 2 provides an overview of the application of artificial intelligence in different areas of the private sector.

(2). How to combine machine representations of policies? Ontologies can be used to capture schema but live tactical feeds for situation awareness, which may be ad hoc, are also critical.

 

PHASE I: Develop a framework/approach to address the challenges outlined above. Prepare a report documenting the proposed framework/approach along with any preliminary results or data that help demonstrate the viability of the proposed approach. Include in the report a proposed set of benchmarks for assessing performance of the framework and a clear articulation on how the framework is viable with incomplete training data sets. The latter is important because warfare commanders are individuals who have different preferences for receiving and displaying information to support a decision.

 

PHASE II: Implement the proposed framework using representative data sets for different functions or missions. Demonstrate how the framework correctly interprets intent and then translates that intent into traffic engineering policies. Show how this intent is met both with dynamic network demand and changing circumstances (e.g., priorities change due to a triggering event). Prepare a report documenting the framework implemented, how it was tested, the resulting performance, and recommendations or lessons learned for future implementations.

 

PHASE III DUAL USE APPLICATIONS: Integration and transition into ADNS is the objective of Phase III. The commercial sector has historically relied on fixed, terrestrial networks and can either easily procure more bandwidth to alleviate congestion or add redundancy. For truly mission critical traffic, the commercial sector builds dedicated networks with dedicated resources to guarantee performance. However, the push towards 5G deployment and increasing need for real-time control systems for autonomous vehicles, automated manufacturing, smart city concepts, etc. are pushing the commercial sector to develop prioritization mechanisms and how to orchestrate their employment across the network to ensure end-to-end delivery of mission-critical traffic. A potential commercial transition option that can be explored is to integrate the algorithms developed into the zero-touch network management solutions developed for 4G/5G mobile services by ZTouch.

 

REFERENCES:

Ziegenfuss, MAJ Mark Paul. Employing the US Navy’s Composite Warfare Commander Construct to a US Army Corps to conduct Command and Control in Multi-Domain Operations, Naval War College, 18 August 2021. https://apps.dtic.mil/sti/trecms/pdf/AD1152828.pdf
Blagec, Kathrin; Barbosa-Silva, Adriano; Ott, Simon and Samwald, Matthias. A curated, ontology-based, largescale knowledge graph of artificial intelligence tasks and benchmarks, Nature Scientific Data, 17 June 2022. https://www.nature.com/articles/s41597-022-01435-x

 

KEYWORDS: Command, Control, Network, Prioritization, Mission, Automated, Dynamic, artificial intelligence/machine learning, AI/ML