Advanced Nondestructive Inspection System for Detection and Characterization of Corrosion under Thick Coatings
ID: N241-065Type: BOTH
Overview

Topic

Advanced Nondestructive Inspection System for Detection and Characterization of Corrosion under Thick Coatings

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for an Advanced Nondestructive Inspection System for Detection and Characterization of Corrosion under Thick Coatings. The Navy branch is specifically interested in this topic. The objective is to develop a new Nondestructive Inspection (NDI) system capable of detecting decohesion of a thick coating from its substrate and characterizing the presence of corrosion under very thick polymer coating sections. The system should be able to inspect the entire immersed portion of a ship hull autonomously and map the location and extent of corrosion without damaging the coating. The Phase I of the project involves exploring various non-destructive technologies through a literature search and downselecting the two or three most promising options or proposing a new inspection methodology. Phase II includes further testing and validation of the selected NDE technology, collaboration with a Navy laboratory, and potential classification of work. Phase III focuses on dual-use applications of the technology in industries such as concrete, insulating foam, and alloy surfaces. The solicitation is closed, and more information can be found on the Defense SBIR/STTR Opportunities website.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Water Tester at Point of Need
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a water tester at the point of need. The objective of this research topic is to improve water surveillance by developing a rugged and compact field instrument capable of providing microbiological and metal detection capabilities. The goal is to reduce both short- and long-term health risks to personnel. The water tester should be able to analyze for total coliforms, Escherichia coli, arsenic, lead, copper, and cyanide, providing rapid results in less than 4 hours. The equipment must be compact, durable, and able to fit in a carry-on piece of luggage, weighing no more than 25 pounds. The project will be conducted in two phases: Phase I involves a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military use for Special Operations Forces and conventional forces, as well as environmental programs, emergency response teams, and other federal directorates. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation on grants.gov.
    DOD SBIR 24.4 Annual - Water Tester at Point of Need
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a water tester at the point of need. The objective of this solicitation is to develop applied research for an innovative capability to improve water surveillance in field conditions. The goal is to create a rugged and compact field instrument that can provide microbiological and metal detection capabilities to reduce health risks to personnel. The water tester should be able to analyze for total coliforms, Escherichia coli, arsenic, lead, copper, and cyanide, providing rapid results within 4 hours. The equipment must be compact, durable, and able to fit in carry-on luggage, weighing no more than 25 pounds. The project will be conducted in two phases: Phase I involves a feasibility study, and Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military use, environmental programs, emergency response teams, and other federal directorates. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link: here.
    DOD SBIR 24.4 Annual - Direct to Phase II: Next-generation Autonomy for Unmanned Maritime Vehicles (UMVs)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Direct to Phase II: Next-generation Autonomy for Unmanned Maritime Vehicles (UMVs)" as part of the SBIR program. The Navy is specifically interested in developing next-generation autonomy that will increase the capability and scope of utility of UMVs while decreasing the level of remote human operator involvement. The goal is to enable UMVs to perform complex tasks with little to no human intervention, handle dynamic and harsh maritime environments, support diverse missions and tasks, and cooperate autonomously with other UMVs. The technology should operate with low-bandwidth and intermittent communication and be robust to uncertain and inaccurate perception information. The project will involve the development of algorithms and software, simulation-based testing, and in-water testing with physical-small scale models. The Phase II period of performance is anticipated to be four years. Successful completion of the project could lead to the transition of the Next-generation Autonomy software to the acquisition program for use within its architecture.
    DOD SBIR 24.4 Annual - Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program focused on the topic of "Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)". The Defense Health Agency is the specific branch of the DOD overseeing this topic. The objective is to develop a simple-to-use sample collection and processing method that can accurately detect specific fungal and bacterial species commonly associated with complex battlefield wound infections. The technology should be capable of preparing an adequate specimen for identification and detection in far-forward deployed environments. The current diagnostic capabilities for battlefield wound infections are limited and time-consuming, leading to delays in treatment and medical intervention decisions. The proposed technology should provide rapid diagnostics with a sample collection-to-result time of less than 2 hours, improving patient outcomes and reducing morbidity and mortality. The technology should be compatible with wet/dry environments, require minimum logistical support, and be stable in long-term storage. It should also be easy to use with little training and provide unambiguous primary output. The technology must include a plan for FDA clearance and should align with CLIA-waived complexity standards. The SBIR program consists of three phases: Phase I focuses on demonstrating scientific and technical feasibility, Phase II involves refining the technology and integrating it with a rapid diagnostic platform, and Phase III aims to secure FDA approval and commercialize the technology for both civilian and military settings. The government may propose further harmonization of the technology with other relevant products to meet additional DoD requirements. The solicitation is open until March 31, 2025. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.
    DOD SBIR 24.4 Annual - Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program focused on the topic of "Sample Collection and Processing Methods to Support Battlefield Wound Infection Diagnostics (Direct to Phase II)". The Defense Health Agency is the branch responsible for this topic. The objective is to develop a simple-to-use sample collection and processing method capable of preparing an adequate specimen for the identification and accurate detection of specific fungal and/or bacterial species commonly associated with complex battlefield wound infections. The technology should be suitable for use in far-forward deployed environments. The current diagnostic capabilities for battlefield wound infections are limited and time-consuming, resulting in delays in treatment and medical intervention decisions. The proposed technology should enable rapid diagnosis (less than 2 hours) at the point of injury, improving patient outcomes and reducing morbidity and mortality. The technology should be compatible with wet/dry environments, require minimum logistical support, and be stable in long-term storage. It should also be easy to use with little training and provide unambiguous primary output. The technology must include a plan for FDA clearance and should align with CLIA-waived complexity standards. The SBIR program consists of three phases: Phase I focuses on demonstrating scientific and technical feasibility, Phase II involves refining the technology and integrating it with a rapid diagnostic platform, and Phase III aims to secure FDA approval and transition the technology for commercial use in both civilian and military settings. The proposal submission deadline is March 31, 2025. More information can be found on the grants.gov website or the DOD SBIR/STTR Opportunities page.
    DOD SBIR 24.4 Annual - Direct to Phase II: Next-generation Autonomy for Unmanned Maritime Vehicles (UMVs)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Direct to Phase II: Next-generation Autonomy for Unmanned Maritime Vehicles (UMVs)" as part of the SBIR program. The Navy is specifically interested in developing next-generation autonomy that will increase the capability and scope of utility of UMVs while decreasing the level of remote human operator involvement. UMVs refer to both Unmanned Surface Vehicles (USVs) and Unmanned Underwater Vehicles (UUVs). The goal is to advance the state of the art in UMV autonomy by enabling UMVs to perform complex tasks with little to no human intervention, handle dynamic and harsh maritime environments, support diverse missions and tasks, and cooperate autonomously with other UMVs. The proposed autonomy should operate with low-bandwidth and intermittent communication and be robust to uncertain and inaccurate perception information. The project will consist of a Phase I-type effort to develop a workable prototype or design, followed by a Phase II effort to develop, demonstrate, and validate the next-generation autonomy software. The Phase II period of performance is anticipated to be four years. Successful completion of the project is expected to transition the Next-generation Autonomy software to the acquisition program for use within its Unmanned Maritime Autonomy Architecture (UMAA) in USV programs.
    DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" in their SBIR 24.4 Annual solicitation. The Defense Advanced Research Projects Agency (DARPA) is specifically interested in technologies related to additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. They are also looking for advancements in the understanding and characterization of novel fluid dynamics that enhance propulsion performance. The objective is to achieve coherence between a cooperating set of commodity devices, resulting in increased thrust to weight, fuel efficiencies, and propellant mass fractions. This solicitation is open for Phase II proposals only, and Phase I proposals will not be accepted or reviewed. Phase II will involve designing and evaluating enabling technologies at the system and subsystem level, as well as advancing modeling and simulation tools. Physical hardware proposals should include development, installation, integration, demonstration, and/or test and evaluation of the proposed prototype system. Software or advanced tool development proposals should have a development approach anchored in the physics of the problem and ways to validate the software against existing test data. The Phase II effort consists of a base period of 12 months and an option period of 12 months. Phase III of this project will focus on transition and commercialization of the developed technologies. The proposer is required to obtain funding from private sector or non-SBIR Government sources to develop the prototype software into a viable product or non-R&D service for sale in military or private sector markets. The technologies developed under this topic will have applications in both commercial and military sectors, including commercial transportation, high-speed delivery, and responsiveness to fluidic environments. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.4 Annual topic page on the SBIR website (https://www.sbir.gov/node/2492697). The solicitation is currently open, and the application due date is March 31, 2025.
    DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website here.
    DOD SBIR 24.4 Annual - Autonomous Optical Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight in remote locations where proper test infrastructure is unavailable. The Autonomous Optical Sensor (AOS) system will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities. The sensor will operate autonomously for an extended period with either a battery or renewable energy source and wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated AOS configuration that includes various types of optical sensors and develop an AI framework to manage the system. Phase II will involve creating a prototype of the AOS and refining the integrated system design for optimal performance. The potential impacts of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit a proposal, visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - YTC Full Load Cooling
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "YTC Full Load Cooling" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to develop modernized data processing techniques to accurately assess the cooling capabilities of military vehicles with electronically controlled powertrains. The current testing methodologies and data processing techniques for fluid temperature data in critical systems of military vehicles are outdated and cannot be used for assessing vehicles with electronically controlled transmissions. The goal is to modernize the test methodology and utilize synthetic data generation techniques to accurately characterize the performance of the vehicle, even in extreme environments. The Phase I of the project will involve an initial site visit, development of a new Full Load Cooling (FLC) test methodology, characterization of powertrain derating, and submission of a final report. Phase II will focus on refining the FLC test methodology, developing a software program and Graphical User Interface (GUI) for synthetic data generation, and creating a test plan for field conditions. The potential impacts of this research include improved testing and assessment of military vehicles' cooling system performance, better understanding of powertrain derating, and the development of advanced data processing techniques. The research will leverage commercial industry data and expertise on electronically controlled powertrains and can have applications in modeling and simulation capabilities for engine and energy cooling, as well as in the manufacturing process for cooling systems and powertrains. The project duration is from 4QFY24 to 3QFY26, and interested parties can find more information and submit proposals on the DOD SBIR website.