Specialized Crystal Growth and Material Characterization
ID: OSD233-003Type: BOTH
Overview

Topic

Specialized Crystal Growth and Material Characterization

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2023

Additional Information

https://www.defensesbirsttr.mil/
Timeline
  1. 1
    Release Aug 23, 2023 12:00 AM
  2. 2
    Open Sep 20, 2023 12:00 AM
  3. 3
    Next Submission Due Oct 18, 2023 12:00 AM
  4. 4
    Close Oct 18, 2023 12:00 AM
Description

The Department of Defense (DoD) is seeking proposals for the topic of "Specialized Crystal Growth and Material Characterization" as part of the SBIR 23.3 BAA. The objective of this topic is to develop innovative crystals that are transparent in the vacuum ultraviolet (VUV) region of the electromagnetic spectrum and can host thorium dopants. The crystals should have a concentration of 1016-1017 thorium atoms per cubic centimeter and can be either thorium doped into CaF2 and/or thorium doped into MgF2. The ability to produce both CaF2 and MgF2 crystals is preferred. The crystals must transmit VUV light down to at least 140 nm with >99% bulk transmission, requiring very low levels of impurities. The topic also encourages exploration of other large bandgap crystals.

In Phase I, proposers must demonstrate a proof-of-concept for growing/developing a crystal that is transparent in the VUV region and able to host radioactive dopants. They must also show the ability to grow low-impurity VUV crystals, purify the material, and characterize the crystal properties. Phase II involves demonstrating and developing a method to grow crystals from a small amount of dopant, as well as developing a method for sectioning and polishing the crystals. The proposers must verify methods for ascertaining the amount of thorium dopant, the ability to handle thorium isotopes, and the capability to deliver thorium doped crystals. Prototype crystals with specific dimensions and surface polish must be provided.

In Phase III, the knowledge gained in Phase II should be applied to grow and distribute the specialized doped material for the DoD and other interested partners. A manufacturing plan for a smooth transition is ideal. The solicitation is closed, and more information can be found on the DoD SBIR 23.3 BAA page on grants.gov.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Solid-State Scalable/Tileable Imaging Detector for High-Energy Neutron Radiography
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for a solid-state scalable/tileable imaging detector for high-energy neutron radiography. The objective is to deliver a state-of-the-art high-energy neutron radiography imaging/detector. The technology will be used in conjunction with a source of high-energy neutrons to achieve a state-of-the-art neutron radiography system. The project will consist of three phases. In Phase I, the proposer must prove the principle through a white paper study that demonstrates strong evidence that a solid-state neutron detector can be designed and constructed on a chip. In Phase II, the proposer will build and deliver a tiled detector with minimum dimensions of 11" square that is effective for 1 MeV neutrons. The detector should provide short acquisition imaging times, high contrast, high spatial resolution, and high signal-to-noise ratio. In Phase III, the proposer will explore dual-use applications of the technology. Potential applications include accurate and fast inspections of Army ammunition, armaments, and other products for quality, safety, and lethality. The technology could also be used for compact, lightweight, self-contained scalable detectors in the detection of materials that emit gamma/beta rays or sub-atomic particles, such as radioactive isotopes, contamination, and special nuclear material. Commercial applications could include ground stationary check points, aerial applications, and underground/underwater drilling/mining applications. The project duration is not specified, but the proposal submission deadline is March 31, 2025. More information can be found on the DOD SBIR website (https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - High-Power Single Mode Diode Bars
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "High-Power Single Mode Diode Bars" as part of their SBIR 24.4 Annual solicitation. The Army branch is specifically interested in this topic. The objective is to develop a diode bar with multi-watt power output per emitter while maintaining single mode operation when coupled to an external wavelength beam combiner. This technology aims to enable power scaling in direct diode high energy lasers (HELs) with improved efficiency. The Army is looking for diode bars with 5W-10W per emitter and >45% efficiency at 9xxnm-10xxnm wavelength. The solicitation is currently open, and Phase I proposals are being accepted with a budget of up to $250,000 for a 6-month period. During Phase I, the government and industry will collaborate to refine the objectives and design of the emitter, supported by modeling, simulation, experimentation, and analysis. Phase II will involve completing a prototype design for production and delivering a demonstration device for testing against threshold specifications. In Phase III, the technology has potential dual-use applications in sensing, communications, and directed high energy fields. Single-mode diode bars can be used in LiDAR, fiber optic communications, manufacturing, medical procedures, cosmetics, and printing. For more information and to submit a proposal, visit the DOD SBIR website: [link](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/). The application due date is March 31, 2025.
DOD SBIR 24.4 Annual - Automated Functional Grading of Materials for Directed Energy Deposition Additive Manufacturing
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of software for automated functional grading of materials in directed energy deposition additive manufacturing. This research topic aims to enable the production of complex, multi-material munitions with enhanced lethality. The software should allow for the creation of functionally graded materials (FGMs) by generating tool paths for multi-material grading in at least three directions. The software should be capable of accepting user inputted gradients for combinations of at least four metals simultaneously. In Phase I, a proof-of-concept software should be developed to print FGMs on a directed energy deposition additive manufacturing printer. The software should be able to accept user-generated gradients and demonstrate control over changing the mixing of metals. Materials characterization should be performed to verify the chemistry of the deposited gradient. In Phase II, the software should be expanded into a prototype capability, allowing for user-defined material grading using up to four metals simultaneously. Graded test coupons should be fabricated in multiple orientations, and a demonstration part containing a functionally graded material should be generated. Materials characterization should be performed for each coupon. The development of this software will greatly increase manufacturing capability and potentially help increase widespread adoption of directed energy deposition additive manufacturing technology. The military and civilian sectors, including manufacturing research, aerospace, mining, power, tool manufacturing, and medical applications, would benefit from this technology. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2651311).
DOD SBIR 24.4 Annual - Portable Diamond NV-Based Quantum Magnetometer for Enhanced Detection of Person-Borne Improvised Explosive Devices (PBIEDs)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a portable Diamond Nitrogen-Vacancy (NV) Center-based Quantum Magnetometer for enhanced detection of Person-Borne Improvised Explosive Devices (PBIEDs). Quantum magnetometers utilizing Diamond NV technology offer significant advancements in sensitivity and precision for detecting minor fluctuations in magnetic fields. The magnetometers provide benefits such as exceptional sensitivity, robustness, durability, and non-invasive detection. However, challenges include manufacturing complexity, cost, false positives in metal-rich environments, and limitations in detection range and depth. The solicitation invites proposals for designing a portable Diamond NV-based Quantum Magnetometer that addresses these challenges and demonstrates a thorough understanding of operational contexts. The project will be conducted in three phases: Phase I involves foundational groundwork and design schematics, Phase II focuses on developing a working prototype, and Phase III involves refining the final deployable equipment and procedures. The development of a better magnetometer has the potential to provide significant benefits to numerous programs within the DoD. The deadline for proposal submission is March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2651331).
DOD STTR 24.D Annual - Optical-Atomic System Integration & Calibration (OASIC)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Optical-Atomic System Integration & Calibration (OASIC)" as part of the Small Business Innovation Research (SBIR) program. The objective is to create a user facility for an atom-based quantum testbed that can prototype, validate, and benchmark nanophotonic, optoelectronic, and electronic components and sub-systems. The goal is to enable the development of scalable, low-SWaP atom-based quantum sensors, clocks, computing architectures, and other integrated or chip-scale quantum technologies. The solicitation emphasizes the need for rigorous testing and evaluation procedures compatible with the performance requirements of atom-based quantum devices. The Phase I of the project will focus on designing and analyzing the performance and operation of the proposed testbed user facility, as well as developing an operation and business plan. The Phase II will involve constructing and demonstrating the quantum testbed based on the Phase I design. The project duration for Phase I is 4 months, and for Phase II is 24 months. The solicitation encourages the development of integrated, low-SWaP quantum systems for applications in defense and commercial markets. The deadline for proposal submission is March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2506137).