Low Latency Space Object Maneuver Detection
ID: SF241-0023Type: BOTH
Overview

Topic

Low Latency Space Object Maneuver Detection

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic of "Low Latency Space Object Maneuver Detection" as part of their SBIR 24.1 BAA solicitation. The objective of this research is to develop methods for reducing the latency in space object maneuver detection, with the goal of identifying and characterizing maneuvers as quickly as possible. The ability to detect space object maneuvers is crucial for space domain awareness and space traffic management. The proposed solutions should utilize existing sensor phenomenologies, cadences, and data types to detect and characterize maneuvers with limited latency. The research will involve developing solution methodologies, conducting analysis of alternatives, and implementing prototype simulations. The performance of the methodology will be tested against real-world data across multiple orbital regimes and sensor types. Phase III efforts may include integration into operational test environments and transition to operational users. Military applications include more timely and accurate conjunction assessment and threat awareness. The solicitation is open until February 21, 2024. For more information, visit the SBIR topic link or the solicitation agency website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Autonomous Optical Sensors
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight. The sensor will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities, allowing it to calibrate and manage itself and operate autonomously for an extended period. The sensor will wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated configuration of the Autonomous Optical Sensor (AOS) that includes various types of optical sensors and an AI framework. Phase II will involve creating a prototype of the AOS based on the Phase I analysis, refining the integrated system design, and conducting functional testing in an operational context. The potential applications of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project is currently open for proposals, with a closing date of March 31, 2025. More information can be found on the DOD SBIR website.
DOD SBIR 24.4 Annual - Autonomous Optical Sensors
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight in remote locations where proper test infrastructure is unavailable. The Autonomous Optical Sensor (AOS) system will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities. The sensor will operate autonomously for an extended period with either a battery or renewable energy source and wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated AOS configuration that includes various types of optical sensors and develop an AI framework to manage the system. Phase II will involve creating a prototype of the AOS and refining the integrated system design for optimal performance. The potential impacts of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit a proposal, visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic. The Space Development Agency (SDA) is looking for novel architecture concepts, systems, technologies, and capabilities that enable leap-ahead improvements for future tranches of currently planned PWSA capability layers or address emerging warfighter needs. The research areas include trusted AI and autonomy, advanced computing and software, integrated sensing and cyber, hypersonics, microelectronics, integrated network systems-of-systems, space technology, renewable energy generation and storage, advanced infrastructure, and advanced manufacturing. The solicitation is open for Phase II proposals only, and proposers must demonstrate the scientific and technical merit and feasibility of their projects. The research will support the development of the PWSA, a resilient military sensing and data transport capability in Low Earth Orbit (LEO). The solicitation provides specific themes and focus areas for potential deliverables, such as integrating commercial sensing to the transport layer, developing optical inter-satellite link (OISL) technology, advancing cyber and networking capabilities, and increasing power for spacecraft bus. The Phase III applications of the research include improving low Earth orbit communication systems and space-based processing for effective distribution of sensor data. The proposal submission deadline is March 31, 2025. For more information and to access the proposal template, visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Robust Computer Vision for Better Object Detection with Limited Training Data
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Robust Computer Vision for Better Object Detection with Limited Training Data" as part of their SBIR 24.4 Annual solicitation. The goal of this topic is to experiment with innovative AI/ML approaches to object identification and imagery scene analysis. The increasing availability of digital imagery requires automated methods to process and analyze vast amounts of multi-modal data efficiently. One critical application is the identification of objects of interest (OoI) within imagery data or the scene generated by the imagery, which can provide valuable insights and facilitate decision-making processes in various fields such as military intelligence, environmental monitoring, transportation management, and security surveillance. The solicitation is open for Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for an 18-month period of performance. Proposers interested in submitting a DP2 proposal must provide documentation to substantiate that the scientific and technical merit and feasibility equivalent to a Phase I project has been met. The focus of this SBIR topic is robust AI/ML object detection techniques for computer vision that do not rely on extensive availability of labeled training data. The use of foundational knowledge and methods, such as handcrafted features, evolutionary algorithms, and newer techniques based on transformers, can be leveraged for this topic without requiring a feasibility study. During DP2, firms should develop and implement novel or hybrid AI/ML models for object detection that do not rely on extensive training data and train models in Project Linchpin's AI Unclassified Operations Environment using Linchpin data for DOD use cases. The Phase III dual-use applications include autonomy, retail, public safety, traffic management, enhanced security, and agriculture. Computer vision solutions in the private sector encompass a wide range of applications, and companies like Amazon, Google, and Microsoft offer cloud-based object detection and recognition services. The solicitation is open until March 31, 2025. For more information and to submit a proposal, visit the DOD SBIR website: [link](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" in their SBIR 24.4 Annual solicitation. The Defense Advanced Research Projects Agency (DARPA) is specifically interested in technologies related to additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. They are also looking for advancements in the understanding and characterization of novel fluid dynamics that enhance propulsion performance. The objective is to achieve coherence between a cooperating set of commodity devices, resulting in increased thrust to weight, fuel efficiencies, and propellant mass fractions. This solicitation is open for Phase II proposals only, and Phase I proposals will not be accepted or reviewed. Phase II will involve designing and evaluating enabling technologies at the system and subsystem level, as well as advancing modeling and simulation tools. Physical hardware proposals should include development, installation, integration, demonstration, and/or test and evaluation of the proposed prototype system. Software or advanced tool development proposals should have a development approach anchored in the physics of the problem and ways to validate the software against existing test data. The Phase II effort consists of a base period of 12 months and an option period of 12 months. Phase III of this project will focus on transition and commercialization of the developed technologies. The proposer is required to obtain funding from private sector or non-SBIR Government sources to develop the prototype software into a viable product or non-R&D service for sale in military or private sector markets. The technologies developed under this topic will have applications in both commercial and military sectors, including commercial transportation, high-speed delivery, and responsiveness to fluidic environments. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.4 Annual topic page on the SBIR website (https://www.sbir.gov/node/2492697). The solicitation is currently open, and the application due date is March 31, 2025.