Trusted Automated Satellite Operations for Mission Life
ID: SF241-0020Type: BOTH
Overview

Topic

Trusted Automated Satellite Operations for Mission Life

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for their SBIR 24.1 BAA solicitation, specifically for the topic of "Trusted Automated Satellite Operations for Mission Life". The objective of this research is to develop an on-orbit autonomous software suite or architecture that can autonomously evaluate and recommend courses of action for spacecraft in a contested space environment. The technology should enable long periods of time without operator intervention and extend throughout the lifetime of the vehicle. The desired capabilities include data analytics techniques, validation and verification methods, visualization tools, a cyber-secure environment, and electronics capability for computation and course of action execution on-orbit.

In Phase I, a comprehensive review of current research in spacecraft autonomy will be conducted, and the possible requirements for an integrated autonomy suite will be investigated. The deliverable should be a critical design review (CDR) quality engineering artifact or a demonstration of lifecycle autonomy on a testbed.

Phase II will involve building and delivering a breadboard or hardware in the loop (HIL) quality solution, demonstrated on at least one form factor size, ranging from a 6U CubeSat to a rideshare class vehicle. The solution should maintain vehicle operations in all three life phases and ensure positive energy balance, pointing stability, and operational environments for payloads.

In Phase III, the prototype lifetime autonomous system will be tested by a government-sponsored entity to validate its capability. Transition opportunities for utilization in approved government and civilian applications will be evaluated and documented.

The solicitation is closed, and more information can be found on the Defense SBIR/STTR website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic. The Space Development Agency (SDA) is looking for novel architecture concepts, systems, technologies, and capabilities that enable leap-ahead improvements for future tranches of currently planned PWSA capability layers or address emerging warfighter needs. The research areas include trusted AI and autonomy, advanced computing and software, integrated sensing and cyber, hypersonics, microelectronics, integrated network systems-of-systems, space technology, renewable energy generation and storage, advanced infrastructure, and advanced manufacturing. The solicitation is open for Phase II proposals only, and proposers must demonstrate the scientific and technical merit and feasibility of their projects. The research will support the development of the PWSA, a resilient military sensing and data transport capability in Low Earth Orbit (LEO). The solicitation provides specific themes and focus areas for potential deliverables, such as integrating commercial sensing to the transport layer, developing optical inter-satellite link (OISL) technology, advancing cyber and networking capabilities, and increasing power for spacecraft bus. The Phase III applications of the research include improving low Earth orbit communication systems and space-based processing for effective distribution of sensor data. The proposal submission deadline is March 31, 2025. For more information and to access the proposal template, visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Autonomous Optical Sensors
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight in remote locations where proper test infrastructure is unavailable. The Autonomous Optical Sensor (AOS) system will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities. The sensor will operate autonomously for an extended period with either a battery or renewable energy source and wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated AOS configuration that includes various types of optical sensors and develop an AI framework to manage the system. Phase II will involve creating a prototype of the AOS and refining the integrated system design for optimal performance. The potential impacts of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit a proposal, visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Autonomous Optical Sensors
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight. The sensor will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities, allowing it to calibrate and manage itself and operate autonomously for an extended period. The sensor will wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated configuration of the Autonomous Optical Sensor (AOS) that includes various types of optical sensors and an AI framework. Phase II will involve creating a prototype of the AOS based on the Phase I analysis, refining the integrated system design, and conducting functional testing in an operational context. The potential applications of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project is currently open for proposals, with a closing date of March 31, 2025. More information can be found on the DOD SBIR website.
DOD SBIR 24.4 Annual - Small Unmanned Ground Robotic Systems
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a cyber-hardened small unmanned ground robotic system. The system should be capable of being operated using both a vendor-developed .apk TAK GOV software controller and a Tomahawk Robotics Grip S20 universal controller. It should integrate the best C2/data link components and be operable with Silvus Technologies and Persistent Systems radios. The system should be designed for intelligence, surveillance, and reconnaissance (ISR) purposes and be able to operate in all-weather conditions within rural and urban environments. The system should have a minimum battery life of 60-90 minutes and a ground control station line-of-sight range capability of 100 meters. The integrated sensors should be able to identify moving armed personnel at specified distances. The system should also have cyber survivability attributes and be capable of carrying various payloads. The Phase I of the project involves conducting a feasibility study to assess the options that satisfy the requirements. The Phase II includes developing, installing, and demonstrating a prototype system. The system has potential applications in a broad range of military operations, enhancing operational situational awareness, reducing cognitive and physical workload, and reducing risk to the user. The project is open for proposals until March 31, 2025. For more information, visit the [solicitation link](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - NAVAIR Open Topic for Advanced Robotic Automation for Fleet Readiness Center Industrial Processes
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the NAVAIR Open Topic for Advanced Robotic Automation for Fleet Readiness Center Industrial Processes. The objective of this solicitation is to advance the automation of industrial processes within Fleet Readiness Centers (FRCs) to enhance efficiency, quality, safety, pollution prevention, and productivity through the integration of advanced robotic technologies. The technology areas of interest include advanced robotic systems integration for aircraft maintenance and repair, human-robot collaboration and safety in aviation MRO, and emerging technologies for autonomous aviation maintenance. Phase I proposals must include a base and option period of performance, with a total cost not to exceed $75,000 for the base and $100,000 for the option. Phase II will focus on hardening, ruggedizing, and/or marinizing the technology for integration into an operational environment, with the outcome being a working prototype. Phase III will involve deploying advanced robotic automation solutions tailored to FRC industrial processes and providing logistics support. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2652281).