Efficient Red Micro-LEDs with Pixel Size < 5 Microns for Next-Generation Displays and Visible Light Communication Systems
ID: A24B-T011Type: Phase I
Overview

Topic

Efficient Red Micro-LEDs with Pixel Size < 5 Microns for Next-Generation Displays and Visible Light Communication Systems

Agency

Department of DefenseN/A

Program

Type: STTRPhase: Phase IYear: 2024
Timeline
  1. 1
    Release Apr 17, 2024 12:00 AM
  2. 2
    Open May 15, 2024 12:00 AM
  3. 3
    Next Submission Due Jun 12, 2024 12:00 AM
  4. 4
    Close Jun 12, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the development of efficient red micro-LEDs with a pixel size of less than 5 microns for next-generation displays and visible light communication systems. The goal is to achieve high external quantum efficiency (>2%) for these micro-LEDs. The technology is of interest for strategic and tactical battlefield applications, such as virtual reality (VR) and augmented reality (AR) systems, which require high resolutions and small areas. Existing red micro-LEDs have low efficiency when their size is less than 5 microns, posing a challenge for high-resolution AR/VR systems. The DOD is looking for innovative approaches to address this challenge, including new LED architectures that are compatible with RGB full-color integration and capable of accommodating large arrays. The project will be conducted in two phases: Phase I involves developing a proof-of-concept solution with pixel sizes of 2-5 microns and EQEs exceeding 2%, while Phase II focuses on developing and demonstrating a prototype device that meets the requirements. The project also has potential dual-use applications in the telecom industry and commercial markets. The deadline for proposal submission is June 12, 2024. More information can be found on the DOD SBIR/STTR website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website [here](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Precision Control Lens Eye Tracking Sensors
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of precision contact lens eye tracking sensors for Extended Reality (XR) interaction, training optimization, and cognitive monitoring. The objective is to enhance command and control capabilities in XR environments, optimize training, and enable real-time adaptive systems. Current eye tracking technologies lack the necessary precision and ruggedness for military operations. The use of contact lens-based eye tracking would allow for operational integration into various dynamic scenarios, including manned and unmanned air operations and ground vehicle systems. The proposed project includes feasibility studies, the development of a working prototype, and human factors feasibility studies. The technology has potential applications in academic research, health monitoring, and various market applications. The project is open for proposals until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2484455).
DOD SBIR 24.4 Annual - High-Power Single Mode Diode Bars
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "High-Power Single Mode Diode Bars" as part of their SBIR 24.4 Annual solicitation. The Army branch is specifically interested in this topic. The objective is to develop a diode bar with multi-watt power output per emitter while maintaining single mode operation when coupled to an external wavelength beam combiner. This technology aims to enable power scaling in direct diode high energy lasers (HELs) with improved efficiency. The Army is looking for diode bars with 5W-10W per emitter and >45% efficiency at 9xxnm-10xxnm wavelength. The solicitation is currently open, and Phase I proposals are being accepted with a budget of up to $250,000 for a 6-month period. During Phase I, the government and industry will collaborate to refine the objectives and design of the emitter, supported by modeling, simulation, experimentation, and analysis. Phase II will involve completing a prototype design for production and delivering a demonstration device for testing against threshold specifications. In Phase III, the technology has potential dual-use applications in sensing, communications, and directed high energy fields. Single-mode diode bars can be used in LiDAR, fiber optic communications, manufacturing, medical procedures, cosmetics, and printing. For more information and to submit a proposal, visit the DOD SBIR website: [link](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/). The application due date is March 31, 2025.
DOD SBIR 24.4 Annual - Digital Projection Close Quarters Sight (DP-CQS)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the Digital Projection Close Quarters Sight (DP-CQS) as part of the SBIR 24.4 Annual program. The objective of this topic is to develop applied research for a compact, close-quarters sight that utilizes a digital screen projected onto a transparent surface for the user to look/aim through. The DP-CQS should have multiple user-selectable and user-configurable ballistic reticles, eliminate mechanical adjustors, and improve system stability under thermal and mechanical shock. The feasibility study should consider technologies to eliminate light scattering and minimize color shift. The DP-CQS should have a low Size Weight and Power (SWaP) with a 72-hour continuous battery run time. The Phase I of the project involves conducting a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military weapon systems and the competitive shooting market. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2601895).
DOD SBIR 24.4 Annual - Digital Projection Close Quarters Sight (DP-CQS)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Digital Projection Close Quarters Sight (DP-CQS)" as part of their SBIR 24.4 Annual program. The objective of this topic is to develop applied research for a compact, close-quarters sight that utilizes a digital screen projected onto a transparent surface for the user to look/aim through. The technology should provide multiple user-selectable and user-configurable ballistic reticles, eliminate mechanical adjustors, and improve system stability under thermal and mechanical shock. The feasibility study should explore options for a 1x direct view optic with at least 3 different digital reticle configurations, low Size Weight and Power (SWaP), and a 72-hour continuous battery run time. The DP-CQS should also communicate with external devices for range/ballistic data and user-configured reticles. The Phase I of the project involves conducting a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications for this technology include military weapon systems and the competitive shooting market. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2601895).