Ultra-High Reliable and Efficient Unmanned Surface Vessel (USV) Modular Generator System
ID: N241-060Type: BOTH
Overview

Topic

Ultra-High Reliable and Efficient Unmanned Surface Vessel (USV) Modular Generator System

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for the topic of "Ultra-High Reliable and Efficient Unmanned Surface Vessel (USV) Modular Generator System" as part of their SBIR 24.1 BAA program. The Navy branch is specifically interested in developing and demonstrating a megawatt-scale, ultra-high reliable and efficient modular generator concept for USVs. The goal is to achieve a 4,000 hour no touch maintenance periodicity for continuous operation in a naval environment.

    Current power generation systems for USVs do not meet the future long-duration mission needs, which will be measured in months. The reliability of the Hull, Mechanical, and Electrical (HM&E) systems, including power generation, is crucial for USV operations. The current power generation systems, primarily diesels, are not designed for high reliability and maintainability without human intervention.

    The DOD is looking for innovative solutions to configure and optimize smaller kilowatt-scale power units to achieve a modular generator total power output of 1 MW or greater. The fuel used should be NATO F76, and the building block power unit scale and type can be 10's-100's kW high-density diesels, Stirling generators, fuel cells, or gas turbine generators. The maintenance interval should be 2000 hours, and the mean time between failures (MTBF) should be 4000 hours. The modular generator should operate in marine environment conditions such as salt air ingestion, ships motion in high sea states, shock, vibration, etc. The volumetric and gravimetric density of the modular generator should be equal to or greater than equivalent power level marine diesel generator sets.

    The project will be conducted in three phases. Phase I involves developing a conceptual design of the modular generator with a defined building block power unit. Phase II focuses on developing the modular generator package and demonstrating innovations identified in the description, including testing in high-risk marine environment conditions. Phase III involves building a minimum 500 kW modular generator package installed in a 10' ISO container for at-sea demonstration. Land-based testing will also be performed to prove operational capability and demonstrate innovations. The dual-use applications of this technology include commercial marine and land-based generators.

    For more information and to submit proposals, interested parties can visit the DOD SBIR 24.1 BAA program page on the Defense SBIR/STTR website. The solicitation is currently closed, and the open date for proposals is January 3, 2024. The closing date for proposals is February 21, 2024.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Direct to Phase II: Next-generation Autonomy for Unmanned Maritime Vehicles (UMVs)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Direct to Phase II: Next-generation Autonomy for Unmanned Maritime Vehicles (UMVs)" as part of the SBIR program. The Navy is specifically interested in developing next-generation autonomy that will increase the capability and scope of utility of UMVs while decreasing the level of remote human operator involvement. The goal is to enable UMVs to perform complex tasks with little to no human intervention, handle dynamic and harsh maritime environments, support diverse missions and tasks, and cooperate autonomously with other UMVs. The technology should operate with low-bandwidth and intermittent communication and be robust to uncertain and inaccurate perception information. The project will involve the development of algorithms and software, simulation-based testing, and in-water testing with physical-small scale models. The Phase II period of performance is anticipated to be four years. Successful completion of the project could lead to the transition of the Next-generation Autonomy software to the acquisition program for use within its architecture.
    DOD SBIR 24.4 Annual - Direct to Phase II: Next-generation Autonomy for Unmanned Maritime Vehicles (UMVs)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Direct to Phase II: Next-generation Autonomy for Unmanned Maritime Vehicles (UMVs)" as part of the SBIR program. The Navy is specifically interested in developing next-generation autonomy that will increase the capability and scope of utility of UMVs while decreasing the level of remote human operator involvement. UMVs refer to both Unmanned Surface Vehicles (USVs) and Unmanned Underwater Vehicles (UUVs). The goal is to advance the state of the art in UMV autonomy by enabling UMVs to perform complex tasks with little to no human intervention, handle dynamic and harsh maritime environments, support diverse missions and tasks, and cooperate autonomously with other UMVs. The proposed autonomy should operate with low-bandwidth and intermittent communication and be robust to uncertain and inaccurate perception information. The project will consist of a Phase I-type effort to develop a workable prototype or design, followed by a Phase II effort to develop, demonstrate, and validate the next-generation autonomy software. The Phase II period of performance is anticipated to be four years. Successful completion of the project is expected to transition the Next-generation Autonomy software to the acquisition program for use within its Unmanned Maritime Autonomy Architecture (UMAA) in USV programs.
    DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The potential impacts of this research include enabling rapid and iterative manufacturing processes for a broad range of military applications. The advanced manufacturing and modular design will be critical to all services where rapid iteration and production are needed. The system could be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page on the Defense SBIR/STTR website.
    DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" in their SBIR 24.4 Annual solicitation. The Defense Advanced Research Projects Agency (DARPA) is specifically interested in technologies related to additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. They are also looking for advancements in the understanding and characterization of novel fluid dynamics that enhance propulsion performance. The objective is to achieve coherence between a cooperating set of commodity devices, resulting in increased thrust to weight, fuel efficiencies, and propellant mass fractions. This solicitation is open for Phase II proposals only, and Phase I proposals will not be accepted or reviewed. Phase II will involve designing and evaluating enabling technologies at the system and subsystem level, as well as advancing modeling and simulation tools. Physical hardware proposals should include development, installation, integration, demonstration, and/or test and evaluation of the proposed prototype system. Software or advanced tool development proposals should have a development approach anchored in the physics of the problem and ways to validate the software against existing test data. The Phase II effort consists of a base period of 12 months and an option period of 12 months. Phase III of this project will focus on transition and commercialization of the developed technologies. The proposer is required to obtain funding from private sector or non-SBIR Government sources to develop the prototype software into a viable product or non-R&D service for sale in military or private sector markets. The technologies developed under this topic will have applications in both commercial and military sectors, including commercial transportation, high-speed delivery, and responsiveness to fluidic environments. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.4 Annual topic page on the SBIR website (https://www.sbir.gov/node/2492697). The solicitation is currently open, and the application due date is March 31, 2025.
    DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of the SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The system could have broad military applications where rapid iteration and production are needed, and it may be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page.
    DOD SBIR 24.4 Annual - YTC Full Load Cooling
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "YTC Full Load Cooling" as part of their SBIR 24.4 Annual solicitation. The objective of this research is to develop modernized data processing techniques to accurately assess the cooling capabilities of military vehicles with electronically controlled powertrains. The current testing methodologies and data processing techniques for fluid temperature data in critical systems of military vehicles are outdated and cannot be used for assessing vehicles with electronically controlled transmissions. The goal is to modernize the test methodology and utilize synthetic data generation techniques to accurately characterize the performance of the vehicle, even in extreme environments. The Phase I of the project will involve an initial site visit, development of a new Full Load Cooling (FLC) test methodology, characterization of powertrain derating, and submission of a final report. Phase II will focus on refining the FLC test methodology, developing a software program and Graphical User Interface (GUI) for synthetic data generation, and creating a test plan for field conditions. The potential impacts of this research include improved testing and assessment of military vehicles' cooling system performance, better understanding of powertrain derating, and the development of advanced data processing techniques. The research will leverage commercial industry data and expertise on electronically controlled powertrains and can have applications in modeling and simulation capabilities for engine and energy cooling, as well as in the manufacturing process for cooling systems and powertrains. The project duration is from 4QFY24 to 3QFY26, and interested parties can find more information and submit proposals on the DOD SBIR website.
    DOD SBIR 24.4 Annual - Atmospheric Water Extraction Plus (AWE+)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Atmospheric Water Extraction Plus (AWE+)" as part of its SBIR program. The objective of this solicitation is to develop novel atmospheric water extraction technology with potential for energy use below 100Wh electric per liter of water generated across a wide range of environments. The technology should be integrated into a proof-of-concept prototype producing potable water with a clear path to full-size implementation. The DOD has a critical need to reduce water resupply requirements for mobile and self-sufficient operations. The development of AWE+ technology will have important tactical implications, reducing casualties and costs in forward operating environments. The goal is to provide potable water for a range of military needs by developing low-power, distributable systems that can provide water anywhere, anytime, and without the need for any external liquid water source. DARPA, the Defense Advanced Research Projects Agency, is specifically seeking teams with innovative means of releasing water from sorbents which is cyclically stable and has very low energy requirements. The technology should be able to produce water with not more than 100Wh electricity per liter of water produced, and not more than 100Wh thermal energy per liter of water produced. Proposals should outline a plan for reaching these energy metrics and provide an estimate for the range of environmental conditions at which the devices could operate. The project will be conducted in two phases. Phase I is a six-month effort focusing on proof-of-concept material and release mechanism development. Phase II is a 24-month effort with a base period of nine months, followed by two option periods. The performers will be expected to demonstrate functionality of their water capture and release mechanisms in a laboratory environment, producing at least 100mL of potable liquid water over a six-hour period with minimal loss in performance. The ultimate goal of this effort is to demonstrate AWE capable of meeting potable water needs for expeditionary scenarios with extremely high efficiency. Phase III will focus on transition within the DoD/military and further commercialization of the technology. Potential applications include satisfying military expeditionary water needs, reducing logistical footprint and vulnerability of supply lines, and developing next-generation dehumidification systems for residential and commercial HVAC. Keywords: Atmospheric water extraction, atmospheric water capture, atmospheric water harvesting, sorbent materials, advanced manufacturing. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities website. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
    DOD SBIR 24.4 Annual - Helicopter Expedited Refueling Operations (HERO)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Helicopter Expedited Refueling Operations (HERO)" as part of its SBIR program. The objective of this solicitation is to develop solutions that increase the efficiency of setup, refueling operations, and disassembly of forward arming and refueling points (FARP) for rotary-winged assets. The goal is to reduce the amount of time these assets are unavailable for ground combat operations and decrease the likelihood of enemy detection and attack on the FARP. Currently, FARPs are vulnerable to enemy attack and require a significant number of personnel and equipment. The Army is looking for solutions that expedite the aggregation, assembly, setup, and breakdown of FARP vehicles, hoses, and equipment. Additionally, they are interested in solutions that decrease aircraft refueling times, improve pumping systems, valves, hoses, and other FARP equipment, and decrease aircraft wait/loiter times. The solicitation is open for proposals until March 31, 2025. The Phase I of the project requires Direct to Phase II (DP2) proposals that demonstrate scientific and technical merit, feasibility, and potential commercial applications. Phase II involves refining the design and creating a Technology Readiness Level (TRL) 6 prototype/model/system. Phase III focuses on commercialization objectives and may involve developing a manufacturing-ready product design and engaging in laboratory or operational testing. The Army is particularly interested in solutions that integrate designated Army open standards, consider cost, and adapt to individual Soldiers' needs or scenarios. The funding specifics and performance goals will be provided in the solicitation document available on the DOD SBIR website.
    DOD SBIR 24.4 Annual - Autonomous Bridging Kit Open Topic
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for an Autonomous Bridging Kit as part of its SBIR program. The objective of this project is to develop a solution that allows the Army to autonomously maneuver and connect temporary, mobile bridging platforms for wet gap (water) crossing operations. The desired solution should enable autonomous movement and navigation of fully loaded wet gap bridging platforms and their bays from origin to destination while detecting and avoiding obstacles in the water. The goal is to reduce the assembly time of the bridging platforms and the number of Soldiers required to perform wet gap crossing operations. The project will be conducted in two phases. In Phase I, a preliminary autonomous kit design will be developed. In Phase II, the design will be refined and a prototype of the autonomous kit will be created. The total funding for Phase II awards is $1,900,000 for a 12-month period of performance. The ultimate goal of Phase III is to transition the technology to a US Army lab or a Program Executive Office for further development or potential acquisition pathways. The solicitation is open until March 31, 2025. For more information, visit the DOD SBIR website.
    DOD SBIR 24.4 Annual - Helicopter Expedited Refueling Operations (HERO)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Helicopter Expedited Refueling Operations (HERO)" as part of the SBIR program. The objective of this solicitation is to develop solutions that increase the efficiency of setup, refueling operations, and disassembly of forward arming and refueling points (FARP) for rotary-winged assets. The goal is to reduce the amount of time these assets are unavailable for ground combat operations and decrease the likelihood of enemy detection and attack on the FARP. Currently, FARPs are vulnerable to enemy attack and require a significant number of personnel and equipment. Refueling times can take hours, and the FARP's limited defensive capabilities make mobility essential. The Army is looking for solutions that expedite the aggregation/setup/breakdown of FARP vehicles, decrease refueling times, improve pumping systems and equipment, and decrease aircraft wait times. The solicitation is open for proposals until March 31, 2025. The Phase I of the project requires Direct to Phase II (DP2) proposals that demonstrate scientific and technical merit, feasibility, and potential commercial applications. Phase II involves refining the design and creating a Technology Readiness Level (TRL) 6 prototype/model/system. Phase III focuses on commercialization objectives and may involve low-rate production and testing. The SBIR program provides funding for small businesses to develop innovative solutions that address specific research topics. In this case, the focus is on improving the efficiency and safety of helicopter refueling operations in military settings.