Miniature Smart Satellite Threat Warning Sensor
ID: SF233-D001Type: BOTH
Overview

Topic

Miniature Smart Satellite Threat Warning Sensor

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2023

Additional Information

https://www.defensesbirsttr.mil/
Timeline
  1. 1
    Release Aug 23, 2023 12:00 AM
  2. 2
    Open Sep 20, 2023 12:00 AM
  3. 3
    Next Submission Due Oct 18, 2023 12:00 AM
  4. 4
    Close Oct 18, 2023 12:00 AM
Description

The Department of Defense (DoD) is seeking proposals for the topic "Miniature Smart Satellite Threat Warning Sensor" as part of the SBIR 23.3 BAA. The objective is to develop a low SWaP (Size, Weight, and Power) smart multi-threat warning autonomous sensor with an extremely low false alarm rate. The sensor design should be manufacturing-friendly and launch- and space-qualified for the SDA transport and tracking constellations in low earth orbit (LEO).

In Phase I, the government expects applicants to demonstrate feasibility through a prior "Phase I-type" effort. This includes providing a list of microelectronic components and structural materials that have flown in LEO or can be space certified, identifying machine learning software modifiable for the chosen threat sensor suite, and proposing a list of low-power space-qualified processors. Conceptual sketches of the minimum SWaP earth pointing observing system are also required.

Phase II involves conducting a laboratory brass-board demonstration in a vacuum chamber to stimulate the threat sensor prototype system with low-power threat-based RF and laser signals. A draft manufacturing plan and a draft flight test plan for Phase III are also required.

In Phase III, the goal is to conduct flight tests to evaluate the sensor system's performance in LEO space environmental conditions and its low false alert rate. The technology developed in this project has potential dual-use applications in commercial constellation systems for failure diagnostics and commercial ISR services.

The solicitation is closed, and more information can be found on the DoD SBIR 23.3 BAA website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Lightweight Longwave Bolometer Sensor Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Lightweight Longwave Bolometer Sensor Components" as part of the SBIR program. The objective of this topic is to develop components that enable low size, weight, and power (SWAP) thermal bolometer-type longwave thermal sensor payloads. These components should have equal or better performance than current commercial offerings while driving down SWAP. The components of interest include lens, focal plane, and readout and processing embedded hardware. The components should be ready for integration into a camera module by the end of Phase II. Thermal longwave infrared (LWIR) capabilities are crucial for many Army applications, especially for small Unmanned Aircraft Systems (UAS). However, the size, power, and weight constraints often limit the performance of these sensors. This topic aims to develop components that reduce the weight of thermal payloads while increasing their capabilities and keeping unit costs low. The project will have a Phase I and Phase II, with Phase I proposals accepting a cost of up to $250,000 for a 6-month period of performance. During Phase I, firms should design a proposed component with stakeholder input, analyze the SWAP-C impact of the component, and discuss how it will support the objective sensor payload. Phase II will involve completing the component design, fabricating, testing, and characterizing the component for integration into a lightweight sensor payload. Firms will also refine the design, define relevant interfaces, and lay out a high-level plan for integration. The potential applications of this research include smartphone camera augmentation, UAV camera augmentation, home security systems, and climate tech development. The project references academic research on bolometer manufacturing methods and the efficacy of leveraging colloidal quantum dots (QDs) for IR light sensing. Military contractors have also contributed to the research in the LWIR sensor and bolometer manufacturing spaces. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities page. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
DOD SBIR 24.4 Annual - Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic. The Space Development Agency (SDA) is looking for novel architecture concepts, systems, technologies, and capabilities that enable leap-ahead improvements for future tranches of currently planned PWSA capability layers or address other emerging warfighter needs. The research areas include trusted AI and autonomy, advanced computing and software, integrated sensing and cyber, hypersonics, microelectronics, integrated network systems-of-systems, space technology, renewable energy generation and storage, advanced infrastructure, and advanced manufacturing. The solicitation is open for Phase II proposals only, and proposers must demonstrate the scientific and technical merit and feasibility of their projects. The research will be conducted in multiple themes, including integrating commercial sensing to the transport layer, developing optical inter-satellite link (OISL) technology and industrial base, cybersecurity, networking, in-space processing, increasing power for spacecraft bus, generic BMC3 hardware and middleware solutions, seamless multi-level security (MLS), and high-performance clocks for space. The Phase III applications of this research include providing low earth orbit communication systems and space-based processing for the distribution of overhead sensor data. The proposal submission deadline is March 31, 2025. For more information, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the SDA website.
DOD SBIR 24.4 Annual - Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the Proliferated Warfighter Space Architecture (PWSA) Advanced Capability Development Open Topic. The Space Development Agency (SDA) is looking for novel architecture concepts, systems, technologies, and capabilities that enable leap-ahead improvements for future tranches of currently planned PWSA capability layers or address emerging warfighter needs. The research areas include trusted AI and autonomy, advanced computing and software, integrated sensing and cyber, hypersonics, microelectronics, integrated network systems-of-systems, space technology, renewable energy generation and storage, advanced infrastructure, and advanced manufacturing. The solicitation is open for Phase II proposals only, and proposers must demonstrate the scientific and technical merit and feasibility of their projects. The research will support the development of the PWSA, a resilient military sensing and data transport capability in Low Earth Orbit (LEO). The solicitation provides specific themes and focus areas for potential deliverables, such as integrating commercial sensing to the transport layer, developing optical inter-satellite link (OISL) technology, advancing cyber and networking capabilities, and increasing power for spacecraft bus. The Phase III applications of the research include improving low Earth orbit communication systems and space-based processing for effective distribution of sensor data. The proposal submission deadline is March 31, 2025. For more information and to access the proposal template, visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Low Cost Persistent Multi Sensor Surveillance
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Low Cost Persistent Multi Sensor Surveillance" as part of their SBIR program. The objective of this topic is to develop environmentally hardened sensor nodes that can persistently monitor Radio Frequency (RF), weather conditions, and/or personnel access of remote islands leased on the Kwajalein Atoll for the U.S. Army's Reagan Test Site (RTS). The solutions should be independent of external power sources or communications networks, as there are no cellular or Wi-Fi communications, nor power source, in these areas. The solutions must also be capable of operating in harsh environmental conditions, including heat, humidity, regular rainfall, salt spray, and high atmospheric salinity. The data collected by these sensor nodes will be used for situational awareness, safety, security, and mission planning and support. The solicitation is open for both full or partial solutions, and Phase I proposals with a cost of up to $250,000 for a 6-month period of performance are being accepted. Phase I will involve researching and developing the system/network architecture, designing the hardware components, and proposing power source designs and networking techniques. By the end of Phase I, the awardee should have detailed descriptions of the proposed technologies. In Phase II, the awardee will produce a single prototype that demonstrates the capabilities and methodologies at a minimum of TRL4. They will also develop a user interface and display for situational awareness of sensor control and monitoring. The potential applications of this technology include wireless remote sensing for public safety, health, fitness, and wildlife dual-usages. Some examples of dual uses of remote sensing include anti-poaching efforts, remote environmental sensors enabled by low-Earth orbit satellites, wildfire early recognition sensor systems, agriculture and crop performance monitoring, and urban pollution source detection. For more information and to submit proposals, interested parties can visit the DOD SBIR program website. The solicitation is currently open, and the application due date is March 31, 2025. References: - https://www.sciencedirect.com/science/article/abs/pii/S0927775722021823 - https://www.sciencedirect.com/science/article/pii/S1877050914009831 - http://www.ijpe-online.com/EN/10.23940/ijpe.09.5.p419.mag Keywords: sensors, nodes, Radio Frequency (RF), Reagan Test Site (RTS)
DOD STTR 24.D Annual - Window-glass Telescope for Highly-compensated Ubiquitous Sensing (WITH US)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the Small Business Innovation Research (SBIR) Phase I program. The specific topic of the solicitation is the "Window-glass Telescope for Highly-compensated Ubiquitous Sensing (WITH US)". The objective of this program is to design, develop, and study a large collecting area telescope system that can detect faint objects in space using window(s) already installed on commercial office buildings. The goal is to utilize the massive quantity of in-situ commercial building windows as a tool for sensing faint objects or as a relay optic for sending light to a remote object. The solicitation seeks proposals to design a machine-learning or other system to characterize the surface shape of window glass, design a computational imaging system for hardware or numerical corrections, and design the physical realization of the telescope system. The project duration for Phase I is 12 months, and successful proposals should include modeling and simulation to achieve the goals. Phase II will further develop modeling methods and validate capabilities through hardware design, construction, and testing of prototype subsystems. The Phase II base effort should include a scalability study and a small-scale laboratory demonstration. The Phase II option effort should include a task dedicated to determining the feasibility of integrating components into a fieldable system capable of performing astronomical measurements. The ultimate goal is to commercialize the concept and apply it to various imaging applications, including ground-based Space Domain Awareness (SDA) and satellite surveillance.