Real-Time In-Flight Aircraft State Estimation
ID: N24B-T027Type: Phase I
Overview

Topic

Real-Time In-Flight Aircraft State Estimation

Agency

Department of DefenseN/A

Program

Type: STTRPhase: Phase IYear: 2024
Timeline
  1. 1
    Release Apr 17, 2024 12:00 AM
  2. 2
    Open May 15, 2024 12:00 AM
  3. 3
    Next Submission Due Jun 12, 2024 12:00 AM
  4. 4
    Close Jun 12, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic of "Real-Time In-Flight Aircraft State Estimation" as part of their Small Business Technology Transfer (STTR) Phase I program. The Navy branch is specifically interested in developing a method that utilizes existing aircraft sensors to estimate important flight parameters such as weight, center of gravity, airspeed, wind speed, and other critical aircraft states. The goal is to reduce the need for redundant sensors, improve mission success rates, and enhance pilot situational awareness. The proposer should validate the estimation methodology using simulation or flight test data and determine the accuracy of the estimations. The project will consist of a Phase I feasibility study, followed by Phase II validation using simulation or flight test data. In Phase III, the estimation methodology will be incorporated into a flight control algorithm to identify failed sensors and provide accurate aircraft state information. The successful implementation of this technology would benefit both commercial and military platforms by reducing system complexity, cost, and weight. The solicitation is currently open, with a closing date of June 12, 2024. For more information and to submit a proposal, visit the DOD STTR website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Autonomous Optical Sensors
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight in remote locations where proper test infrastructure is unavailable. The Autonomous Optical Sensor (AOS) system will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities. The sensor will operate autonomously for an extended period with either a battery or renewable energy source and wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated AOS configuration that includes various types of optical sensors and develop an AI framework to manage the system. Phase II will involve creating a prototype of the AOS and refining the integrated system design for optimal performance. The potential impacts of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit a proposal, visit the DOD SBIR website.
DOD SBIR 24.4 Annual - NAVAIR Open Topic for Advanced Robotic Automation for Fleet Readiness Center Industrial Processes
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the NAVAIR Open Topic for Advanced Robotic Automation for Fleet Readiness Center Industrial Processes. The objective of this solicitation is to advance the automation of industrial processes within Fleet Readiness Centers (FRCs) to enhance efficiency, quality, safety, pollution prevention, and productivity through the integration of advanced robotic technologies. The technology areas of interest include advanced robotic systems integration for aircraft maintenance and repair, human-robot collaboration and safety in aviation MRO, and emerging technologies for autonomous aviation maintenance. Phase I proposals must include a base and option period of performance, with a total cost not to exceed $75,000 for the base and $100,000 for the option. Phase II will focus on hardening, ruggedizing, and/or marinizing the technology for integration into an operational environment, with the outcome being a working prototype. Phase III will involve deploying advanced robotic automation solutions tailored to FRC industrial processes and providing logistics support. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2652281).
DOD SBIR 24.4 Annual - Development of an Unmanned Aerial Systems (UAS) Passive Detection, Tracking, and Identification System for Ground Vehicles.
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of an Unmanned Aerial Systems (UAS) Passive Detection, Tracking, and Identification System for Ground Vehicles. The goal of this Army Small Business Innovative Research (SBIR) topic is to develop a passive sensor system capable of detecting, tracking, and identifying single and multiple drones threatening ground vehicles. The system should have a range of up to 2km and provide full hemispherical coverage. It should also include a soldier user interface control panel and the ability to alert at least one operator. The system should be able to operate in wooded/dense environments or large metropolitan areas and be installable on tactical and combat ground vehicles, including Army watercraft. In Phase I, the technical feasibility of passive sensors for drone detection will be determined through computer simulations. The possibility of using passive electromagnetic acoustic, optical, and other innovative sensing for processing multiple drone signatures will be demonstrated. The classification of drone signatures using these passive sensor systems will also be explored. In Phase II, the solution to achieve the capabilities outlined in Phase I will be developed. Optimum materials for the development of passive low-power consumption sensors for UAS detection, tracking, and identification will be identified. Principles of building networks of passive sensors that utilize fast processing capabilities will be developed, along with learning algorithms for drone identification. The system will be evaluated for compliance with the GVSC owned vehicle base kit in the GVSC Vehicle Protection Integration Lab (VPIL). A prototype system will be delivered to GVSC for evaluation and demonstration. Phase III will focus on expanding the capabilities of the solution to simulate different environments and conditions, demonstrating its applicability for municipal security, law enforcement, and commercial vehicles. The solicitation is open until March 31, 2025. For more information and to submit a proposal, visit the DOD SBIR website at [solicitation_agency_url].
DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" in their SBIR 24.4 Annual solicitation. The Defense Advanced Research Projects Agency (DARPA) is specifically interested in technologies related to additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. They are also looking for advancements in the understanding and characterization of novel fluid dynamics that enhance propulsion performance. The objective is to achieve coherence between a cooperating set of commodity devices, resulting in increased thrust to weight, fuel efficiencies, and propellant mass fractions. This solicitation is open for Phase II proposals only, and Phase I proposals will not be accepted or reviewed. Phase II will involve designing and evaluating enabling technologies at the system and subsystem level, as well as advancing modeling and simulation tools. Physical hardware proposals should include development, installation, integration, demonstration, and/or test and evaluation of the proposed prototype system. Software or advanced tool development proposals should have a development approach anchored in the physics of the problem and ways to validate the software against existing test data. The Phase II effort consists of a base period of 12 months and an option period of 12 months. Phase III of this project will focus on transition and commercialization of the developed technologies. The proposer is required to obtain funding from private sector or non-SBIR Government sources to develop the prototype software into a viable product or non-R&D service for sale in military or private sector markets. The technologies developed under this topic will have applications in both commercial and military sectors, including commercial transportation, high-speed delivery, and responsiveness to fluidic environments. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.4 Annual topic page on the SBIR website (https://www.sbir.gov/node/2492697). The solicitation is currently open, and the application due date is March 31, 2025.
DOD SBIR 24.4 Annual - Ensuring Sensor Data Security and Integrity
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Ensuring Sensor Data Security and Integrity" as part of its SBIR program. The objective of this topic is to develop a platform that secures sensor data at the individual record level and supports experimentation to advance technology for DoD and Army Data Strategy VAULTIS goals. The platform should be cost-effective, flexible, and implemented through an Application Programming Interface (API) with no data size limitation. It should also ensure the integrity of sensor data throughout its lifecycle and incorporate attributes such as encryption, immutable data storage, audit and logging, and tamper-proof chain of custody. The Army aims to become more data-centric and capable of conducting operations in contested environments. The project will be conducted in two phases, with Direct to Phase II (DP2) proposals accepted for a cost of up to $2,000,000 for an 18-month period of performance. The contractor will be responsible for integrating, testing, demonstrating, and delivering a lightweight and scalable prototype data provenance solution. The solution should secure all sensor data at the individual record level and include database, replication, data audit, and encryption in a single integrated solution. It should also incorporate knowledge graphs, analytic visualization tools, and support data analysis. The use of blockchain technology is highlighted as a potential dual-use application for protecting sensor data fidelity in various sectors such as healthcare, critical infrastructure, smart homes, and autonomous vehicles. The project references the Army's data plan and strategic goals for 2040. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation link provided: [DOD SBIR 24.4 Annual](https://www.sbir.gov/node/2608861).