Polarization-enhanced, Long-range, Wide-area, High-resolution Imaging System
ID: N24A-T015Type: Phase I
Overview

Topic

Polarization-enhanced, Long-range, Wide-area, High-resolution Imaging System

Agency

Department of DefenseN/A

Program

Type: STTRPhase: Phase IYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for a Small Business Innovation Research (SBIR) program, specifically for Phase I of the STTR program. The topic of the solicitation is "Polarization-enhanced, Long-range, Wide-area, High-resolution Imaging System" and is being conducted by the Navy. The objective of the research is to develop polarization-based techniques to improve target detection and identification and scene clutter characterization at long-range and over a wide field-of-view. The USN seeks to exploit the additional information content provided by polarization to enhance target detection and identification in challenging environments such as the ocean surface. The research will focus on developing a 3D polarization imaging system to significantly improve long-range detection and identification of targets in maritime clutter from surface-ship platforms. The system should consider all wavelength bands from UV to mm-wave and novel polarization techniques such as point-spread-function engineering or speckle correlation. The research will involve the development of hardware and algorithms in Phase I, followed by the realization of the design in Phase II. The ultimate goal is to produce a rugged system that can be field-tested under relevant maritime conditions. The project duration and funding specifics can be found on the solicitation agency's website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Lightweight Longwave Bolometer Sensor Components
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Lightweight Longwave Bolometer Sensor Components" as part of the SBIR program. The objective of this topic is to develop components that enable low size, weight, and power (SWAP) thermal bolometer-type longwave thermal sensor payloads. These components should have equal or better performance than current commercial offerings while driving down SWAP. The components of interest include lens, focal plane, and readout and processing embedded hardware. The components should be ready for integration into a camera module by the end of Phase II. Thermal longwave infrared (LWIR) capabilities are crucial for many Army applications, especially for small Unmanned Aircraft Systems (UAS). However, the size, power, and weight constraints often limit the performance of these sensors. This topic aims to develop components that reduce the weight of thermal payloads while increasing their capabilities and keeping unit costs low. The project will have a Phase I and Phase II, with Phase I proposals accepting a cost of up to $250,000 for a 6-month period of performance. During Phase I, firms should design a proposed component with stakeholder input, analyze the SWAP-C impact of the component, and discuss how it will support the objective sensor payload. Phase II will involve completing the component design, fabricating, testing, and characterizing the component for integration into a lightweight sensor payload. Firms will also refine the design, define relevant interfaces, and lay out a high-level plan for integration. The potential applications of this research include smartphone camera augmentation, UAV camera augmentation, home security systems, and climate tech development. The project references academic research on bolometer manufacturing methods and the efficacy of leveraging colloidal quantum dots (QDs) for IR light sensing. Military contractors have also contributed to the research in the LWIR sensor and bolometer manufacturing spaces. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities page. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
DOD SBIR 24.4 Annual - Forward Looking Infrared (FLIR) Dual Band Focal Plane Array in High Definition Format
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a small energy-efficient self-contained transceiver capable of wireless communication without using traditional radio frequency (RF) transport. The goal is to utilize a non-standard means of signal communication, such as magnetic, acoustic, or infrared, that is difficult to detect and report in covert activities. The transceiver should be highly resistant to interference, detection, and exploitation, and be self-contained, man-portable, easily concealable, and field programmable. The project duration is divided into two phases: Phase I involves creating a design and rationale supporting the solution, while Phase II focuses on developing and testing a prototype. The final product should be fully documented and include operating instructions, interface control documents, and programmability commands. The potential impacts of this technology include new mission deployment possibilities for remote sensor operation and control, as well as applications in areas such as home security, healthcare, additive manufacturing, and automotive safety. The deadline for proposal submission is March 31, 2025. For more information, visit the solicitation agency's website [here](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Solid-State Scalable/Tileable Imaging Detector for High-Energy Neutron Radiography
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for a solid-state scalable/tileable imaging detector for high-energy neutron radiography. The objective is to deliver a state-of-the-art high-energy neutron radiography imaging/detector. The technology will be used in conjunction with a source of high-energy neutrons to achieve a state-of-the-art neutron radiography system. The project will consist of three phases. In Phase I, the proposer must prove the principle through a white paper study that demonstrates strong evidence that a solid-state neutron detector can be designed and constructed on a chip. In Phase II, the proposer will build and deliver a tiled detector with minimum dimensions of 11" square that is effective for 1 MeV neutrons. The detector should provide short acquisition imaging times, high contrast, high spatial resolution, and high signal-to-noise ratio. In Phase III, the proposer will explore dual-use applications of the technology. Potential applications include accurate and fast inspections of Army ammunition, armaments, and other products for quality, safety, and lethality. The technology could also be used for compact, lightweight, self-contained scalable detectors in the detection of materials that emit gamma/beta rays or sub-atomic particles, such as radioactive isotopes, contamination, and special nuclear material. Commercial applications could include ground stationary check points, aerial applications, and underground/underwater drilling/mining applications. The project duration is not specified, but the proposal submission deadline is March 31, 2025. More information can be found on the DOD SBIR website (https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Autonomous Optical Sensors
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight in remote locations where proper test infrastructure is unavailable. The Autonomous Optical Sensor (AOS) system will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities. The sensor will operate autonomously for an extended period with either a battery or renewable energy source and wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated AOS configuration that includes various types of optical sensors and develop an AI framework to manage the system. Phase II will involve creating a prototype of the AOS and refining the integrated system design for optimal performance. The potential impacts of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit a proposal, visit the DOD SBIR website.
DOD SBIR 24.4 Annual - Thermal Reflex Sight
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a Thermal Reflex Sight (TRS) for use by Special Operations Forces in short to medium range target engagement scenarios. The TRS should be a weapon mounted capability that combines a long wave infrared thermal weapons sight with a reflex day optic sight, allowing for targeted engagements in varied lighting conditions. The TRS should be optimized for short to medium range engagements and should not be a "shoot from the hip" sight. The objective of Phase I is to conduct a feasibility study to assess the possible options that satisfy the requirements. Phase II involves the development, installation, and demonstration of a prototype system. The resulting system could have applications in various military and law enforcement settings. The solicitation is open until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2484461).