Additive Manufacturing of Textured Piezoelectric Ceramics
ID: N241-040Type: BOTH
Overview

Topic

Additive Manufacturing of Textured Piezoelectric Ceramics

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the topic of "Additive Manufacturing of Textured Piezoelectric Ceramics" as part of their SBIR 24.1 BAA program. The objective is to develop a low-cost, flexible manufacturing technique to produce textured piezoelectric ceramics for undersea sensor applications. The current manufacturing techniques for these ceramics are expensive and complex, and additive manufacturing (AM) could provide a scalable and cost-effective solution. Proposals will be evaluated based on modifications to existing photo-polymerized resin systems used in 3D printers to be compatible with Navy piezoelectric ceramics, as well as the ability to align high aspect ratio seed particles within each print layer. The project will involve a Phase I to develop a concept, a Phase II to deliver a prototype, and a Phase III to optimize production and transfer the technology to the Navy. The technology has potential applications in hypersonic radomes, commercial and military sensors, and medical imaging devices.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Ruggedized Additive Mobile Manufacturing Unit (RAMMU)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a Ruggedized Additive Mobile Manufacturing Unit (RAMMU) as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to use additive manufacturing in a deployed environment to decrease downtime for foreign and non-standard weapons parts, motor pool parts, and dental accessories. The RAMMU should be able to print different types of materials, including metal, plastics, polys, and steel, while keeping the container below a 10Klbs threshold. It should be a standalone unit with the ability to connect into forward operating bases' power. The system must be easy to use with plug and play capability and should not rely on WIFI, Bluetooth, or the internet for updates or services. In Phase I, a feasibility study will be conducted to assess the options that satisfy the requirements. The study should investigate all options that meet or exceed the minimum performance parameters and recommend the best option. Phase II involves developing, installing, and demonstrating a prototype system on a deployable platform under challenging conditions. The potential impact of this technology is significant, as it can be used in various military applications to reduce the time required to make weapons operational. The system aims to achieve operational usage within 24 hours of a broken part. The project duration is not specified, but the solicitation is open until March 31, 2025. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual page on the Defense SBIR/STTR Opportunities website.
DOD SBIR 24.4 Annual - Electronic quality ferroelectric III-Nitride epitaxy for device heterostructures
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Electronic quality ferroelectric III-Nitride epitaxy for device heterostructures" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop single crystalline epitaxial thin films and heterostructures of group III-IIIb-Nitride thin films for electronic device applications. The goal is to produce films that are scalable to 4-inch diameter wafer sizes or larger. The research aims to enable the development of useful products such as high operating temperature electronic memory, high temperature electronic circuits, and integrated nonlinear optical photonic circuits for UV-visible wavelengths. In Phase I, the focus is on attaining the appropriate precursors for epitaxy and producing films lattice matched to GaN and other substrates. The goal is to assess the optical and electrical quality of the thin films and demonstrate ferroelectric behavior. Phase II continues the pursuit of single crystalline epitaxial thin films and heterostructures, with a focus on developing processes relevant to 4" or larger substrates. The goal is to fabricate devices for electronic memory applications and explore switching behavior. Optical properties and nonlinear optical functionality are also considered. In Phase III, the aim is to produce epitaxial foundry services for electronic and photonic device regimes that utilize ferroelectric III-Nitride thin films. Collaboration with other research groups is encouraged to make accurate comparisons with other epitaxial approaches. The solicitation is open until March 31, 2025. For more information, visit the [SBIR topic link](https://www.sbir.gov/node/2651313) or the [solicitation agency website](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/).
DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of the SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The system could have broad military applications where rapid iteration and production are needed, and it may be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page.
DOD SBIR 24.4 Annual - Advanced Enabling High-Speed Technologies
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Enabling High-Speed Technologies" in their SBIR 24.4 Annual solicitation. The Defense Advanced Research Projects Agency (DARPA) is specifically interested in technologies related to additive manufacturing techniques, materials, propulsion combined cycles, and hot structures. They are also looking for advancements in the understanding and characterization of novel fluid dynamics that enhance propulsion performance. The objective is to achieve coherence between a cooperating set of commodity devices, resulting in increased thrust to weight, fuel efficiencies, and propellant mass fractions. This solicitation is open for Phase II proposals only, and Phase I proposals will not be accepted or reviewed. Phase II will involve designing and evaluating enabling technologies at the system and subsystem level, as well as advancing modeling and simulation tools. Physical hardware proposals should include development, installation, integration, demonstration, and/or test and evaluation of the proposed prototype system. Software or advanced tool development proposals should have a development approach anchored in the physics of the problem and ways to validate the software against existing test data. The Phase II effort consists of a base period of 12 months and an option period of 12 months. Phase III of this project will focus on transition and commercialization of the developed technologies. The proposer is required to obtain funding from private sector or non-SBIR Government sources to develop the prototype software into a viable product or non-R&D service for sale in military or private sector markets. The technologies developed under this topic will have applications in both commercial and military sectors, including commercial transportation, high-speed delivery, and responsiveness to fluidic environments. For more information and to submit proposals, interested parties can visit the DOD SBIR 24.4 Annual topic page on the SBIR website (https://www.sbir.gov/node/2492697). The solicitation is currently open, and the application due date is March 31, 2025.
DOD SBIR 24.4 Annual - Advanced Manufacturing for Common Launch Container
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Advanced Manufacturing for Common Launch Container" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop applied research towards an innovative capability to use advanced manufacturing and iterative design to enable a Common Launch Container to meet military specification requirements for storage, transportation, and munition launch. The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), and offerors must disclose any proposed use of foreign nationals and their country of origin. The research should address the development of an iterative design process and advanced manufacturing to design and validate a munition container for transportation, storage, and launch. The system should be designed to launch the munition at 12-18 feet per second from the pallet on the cargo ramp or pallet in free flight after cargo drop. The feasibility study in Phase I should investigate all options that meet or exceed the minimum performance parameters specified and recommend the option that best achieves the objective. Phase II involves developing, installing, and demonstrating a prototype system on a SOCOM aircraft. The potential impacts of this research include enabling rapid and iterative manufacturing processes for a broad range of military applications. The advanced manufacturing and modular design will be critical to all services where rapid iteration and production are needed. The system could be selected for production or follow-on iterations for future applications. The project duration is not specified, but the solicitation is open until March 31, 2025. More details and the application process can be found on the DOD SBIR 24.4 topic page on the Defense SBIR/STTR website.