Advanced Wearable Integration and Synchronization Hub (AWISH
ID: N241-064Type: BOTH
Overview

Topic

Advanced Wearable Integration and Synchronization Hub (AWISH

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
  1. 1
    Release Nov 29, 2023 12:00 AM
  2. 2
    Open Jan 3, 2024 12:00 AM
  3. 3
    Next Submission Due Feb 21, 2024 12:00 AM
  4. 4
    Close Feb 21, 2024 12:00 AM
Description

The Department of Defense (DOD) is seeking proposals for the Advanced Wearable Integration and Synchronization Hub (AWISH) as part of the SBIR 24.1 BAA. The objective of this solicitation is to develop a hub system that optimizes data capture, synchronization times, and integrates data collected from physiological wearable devices. The hub system should provide early indicators for fatigue and sleep deficiency, reducing human error and improving performance. The awardee will deliver technical documentation and a user manual for the hub. The project will consist of three phases: Phase I involves defining and developing a hub concept, Phase II focuses on developing a prototype hub, and Phase III involves integrating the hub into deployed Naval vessels. The potential applications of this technology extend to commercial sectors such as sporting teams and emergency services. The solicitation is closed, and more information can be found on the DOD SBIR website.

Files
No associated files provided.
Similar Opportunities
DOD SBIR 24.4 Annual - Off the Visor Heads Up Display (HUD)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Off the Visor Heads Up Display (HUD)" as part of its SBIR program. The objective of this topic is to develop available daylight readable off-the-visor display solutions for use in mixed reality (MR) head mounted display (HMD) systems. The goal is to design, produce, deliver, and characterize the most optimal off-the-visor solution for future soldier vision products. The technology should provide increased display-image performance, allowing the Warfighter to comfortably view sensor and computer-generated information while maintaining situational awareness on the battlefield. The technology should also offer ergonomic benefits such as lower weight and improved center of gravity. The project will involve research and definition of three viable see-through vision technology configurations in Phase I, followed by the production of a single prototype off-the-visor HUD in Phase II. The Phase II prototype should have the ability to display static imagery or video content suitable for daytime use and support at least a 30-degree field of view. The potential dual-use applications of this technology include workforce and automotive industries, manufacturing, automotive applications, environmental monitoring, healthcare, and immersive entertainment. The project duration is not specified, and funding specifics can be found on the grants.gov website. For more information, visit the SBIR topic link: [link].
DOD SBIR 24.4 Annual - Advanced Information Technology to Improve Mobility, Interoperability, and Survivability of Expeditionary Medical Command, Control, Communications, and Computers (Direct to Phase II)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for advanced information technology to improve mobility, interoperability, and survivability of Expeditionary Medical Command, Control, Communications, and Computers (Direct to Phase II). The objective is to develop expeditionary and interoperable information technology (IT) to enable health care delivery, medical command and control, medical logistics, and patient movement in austere and contested environments. The technology should bridge the gaps between expeditionary medical units, brick-and-mortar medical facilities, and other healthcare providers, offering robust communications and computer IT packages to implement standards at all levels of care. The solutions should be mobile and rugged, ensuring uninterrupted and secure healthcare delivery within medical units and throughout the continuum. The project will have a Phase I feasibility study, followed by Phase II design refinement and prototype development. The final phase will focus on deployment and optimization of the technology in an operational environment. The potential applications of this technology include organizations requiring distributed operations or operations in austere environments, such as NATO forces, disaster relief efforts, and mobile clinics. Industries struggling with stovepipe systems or disparate/non-existent standards could also benefit from this technology. The project is open for proposals until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2601965).
DOD SBIR 24.4 Annual - Multilayer Waveguide Optical Gyroscope
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the development of a high-end tactical miniature optical waveguide gyroscope for future U.S. Army missions. The current inertial navigation systems used by the Army are large and expensive, and smaller alternatives such as Micro-Electro-Mechanical (MEMS)-based sensors do not meet the Army's requirements for cost, accuracy, stability, and survivability. The goal is to develop a low-cost and lightweight 6-axis Inertial Measurement Unit (IMU) with high-tactical performance. The desired performance includes a gyro bias stability of 0.2 degrees/hour, scale factor error less than 50 ppm, and angular random walk less than 0.05 degree/root-hour. The gyroscope should also have a high bandwidth, high dynamic range, and low sensitivity to extreme shock and vibration environments. The solicitation focuses on the feasibility of new optical waveguide gyroscope technologies, such as the integrated Silicon waveguide Optical Gyroscope (iSOG). The Phase I of the project involves proving the feasibility of a multi-level waveguide optical sensor coil, while Phase II focuses on designing and delivering a prototype waveguide optical gyroscope. The final phase aims to develop an Inertial Sensor Assembly (ISA) consisting of three gyros and three accelerometers. The technology has potential applications in commercial IMUs and military autonomous modular payloads. The project is open for proposals until March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2651325).
DOD SBIR 24.4 Annual - Software Defined RadioHead (SDRH)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic of "Software Defined RadioHead (SDRH)" as part of their SBIR 24.4 Annual solicitation. The objective is to develop a radio agnostic SDRH system that can rapidly adapt the radio carrier frequency among diverse targeted frequency bands using analog and/or digital frequency conversion. This technology will provide additional flexibility to the commander's communication plan. The SDRH design will be a flexible antenna prototype capable of supporting multiple frequencies and radio modules, complementing the C5ISR/CMOSS standard's objective for agnostic hardware. The solicitation is open for Direct to Phase II (DP2) proposals with a maximum cost of $2,000,000 for a 12-month period of performance. Phase II will involve developing a prototype SDRH for evaluation and testing by the U.S. Army Combat Capabilities Development Command (DEVCOM) C5ISR Center. The solicitation also highlights potential dual-use applications of SDRH technology in industries such as IoT, UAVs, smart cities, and mobile communications. The deadline for proposal submission is March 31, 2025. For more information, visit the [solicitation link](https://www.sbir.gov/node/2638119) or the [DOD SBIR/STTR Opportunities](https://www.defensesbirsttr.mil/SBIR-STTR/Opportunities/) website.
DOD SBIR 24.4 Annual - Atmospheric Water Extraction Plus (AWE+)
Active
Department of Defense
The Department of Defense (DOD) is seeking proposals for the topic "Atmospheric Water Extraction Plus (AWE+)" as part of its SBIR program. The objective of this solicitation is to develop novel atmospheric water extraction technology with potential for energy use below 100Wh electric per liter of water generated across a wide range of environments. The technology should be integrated into a proof-of-concept prototype producing potable water with a clear path to full-size implementation. The DOD has a critical need to reduce water resupply requirements for mobile and self-sufficient operations. The development of AWE+ technology will have important tactical implications, reducing casualties and costs in forward operating environments. The goal is to provide potable water for a range of military needs by developing low-power, distributable systems that can provide water anywhere, anytime, and without the need for any external liquid water source. DARPA, the Defense Advanced Research Projects Agency, is specifically seeking teams with innovative means of releasing water from sorbents which is cyclically stable and has very low energy requirements. The technology should be able to produce water with not more than 100Wh electricity per liter of water produced, and not more than 100Wh thermal energy per liter of water produced. Proposals should outline a plan for reaching these energy metrics and provide an estimate for the range of environmental conditions at which the devices could operate. The project will be conducted in two phases. Phase I is a six-month effort focusing on proof-of-concept material and release mechanism development. Phase II is a 24-month effort with a base period of nine months, followed by two option periods. The performers will be expected to demonstrate functionality of their water capture and release mechanisms in a laboratory environment, producing at least 100mL of potable liquid water over a six-hour period with minimal loss in performance. The ultimate goal of this effort is to demonstrate AWE capable of meeting potable water needs for expeditionary scenarios with extremely high efficiency. Phase III will focus on transition within the DoD/military and further commercialization of the technology. Potential applications include satisfying military expeditionary water needs, reducing logistical footprint and vulnerability of supply lines, and developing next-generation dehumidification systems for residential and commercial HVAC. Keywords: Atmospheric water extraction, atmospheric water capture, atmospheric water harvesting, sorbent materials, advanced manufacturing. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities website. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.