Open Source Software: MASTODON: Pioneering Multi-Hazard Analysis for Critical Infrastructure
ID: CW-17-05Type: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFBATTELLE ENERGY ALLIANCE–DOE CNTRIdaho Falls, ID, 83415, USA

PSC

SUPPORT- PROFESSIONAL: SIMULATION (R412)
Timeline
    Description

    Special Notice: ENERGY, DEPARTMENT OF is seeking Open Source Software: MASTODON for pioneering multi-hazard analysis for critical infrastructure. MASTODON is a cutting-edge software tool that offers a comprehensive solution for modeling stochastic nonlinear soil-structure interactions (NLSSI), bringing a new level of sophistication to dynamic probabilistic risk assessments. It is designed to simulate how structures like nuclear facilities, dams, and bridges respond to external hazards, including seismic events. MASTODON excels in the numerical modeling of seismic soil-structure interaction and sets a new benchmark in risk assessment tools. It offers advanced NLSSI modeling, enables precise risk analysis for critical infrastructure against multiple hazards, simulates the entire process from earthquake fault rupture to structural response with high fidelity, enhances the reliability of risk assessments by accurately quantifying uncertainties, and leverages the MOOSE framework for computational efficiency and flexibility. MASTODON is applicable to nuclear facilities, critical infrastructure, and facilitates dynamic probabilistic risk assessments for various external threats. Visit the GitHub page to learn more and download the software for evaluation.

    Point(s) of Contact
    Files
    No associated files provided.
    Similar Opportunities
    Open Source Software: EMRALD: Pioneering Dynamic Risk Assessment for Enhanced Reliability and Safety
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking Open Source Software: EMRALD for Pioneering Dynamic Risk Assessment for Enhanced Reliability and Safety. This software, developed by the Idaho National Laboratory (INL), sets a new standard in dynamic probabilistic risk assessment (PRA), offering unparalleled capabilities to model and analyze complex system interactions in real-time. EMRALD bridges traditional PRA with dynamic modeling, providing a more intuitive and comprehensive risk assessment process. It features a user-friendly interface, dynamic integration with other simulation applications, comprehensive modeling capturing the sequence and timing of events, flexible application across industries, and supports nuclear safety analysis, industrial risk management, simulation enhancement, and operational decision making. Discover how EMRALD can elevate your risk management strategy to new heights.
    Open Source Software: MOOSE: The Multiphysics Simulation Powerhouse
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking Open Source Software: MOOSE: The Multiphysics Simulation Powerhouse. This software is a versatile and powerful simulation tool used in scientific computing and engineering. MOOSE, developed by the Idaho National Laboratory, revolutionizes the approach to multiphysics problems by leveraging advanced nonlinear solver technology. It offers a fully-coupled, fully-implicit multiphysics solver, dimension-independent physics, automatic parallelization for large-scale simulations, and modular development for code reuse. With its user-friendly interface and advanced features such as mesh adaptivity and Continuous and Discontinuous Galerkin methods, MOOSE simplifies complex simulations and is applicable to engineering analysis, scientific research, the energy sector, and environmental studies. Visit mooseframework.org to explore its capabilities and start transforming your research with this cutting-edge multiphysics simulation technology.
    Open Source Software: SR2ML: Pioneering Safety and Reliability in Nuclear Plant Management
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking Open Source Software: SR2ML for Pioneering Safety and Reliability in Nuclear Plant Management. This software package, designed to interface with the RAVEN code developed by INL, enables static and dynamic risk analysis in the nuclear power sector. It provides a comprehensive suite of safety and reliability analysis models, including classical reliability models and advanced components aging models. SR2ML empowers operators with data-driven decision-making tools, driving down O&M costs while enhancing plant safety and efficiency. It streamlines O&M strategies, conducts detailed risk analysis, predicts and mitigates potential system failures, and integrates economic models to maximize plant availability and profitability. Download now to transform your nuclear plant operations.
    Open Source Software: BlackBear: Advanced Simulation for Structural Integrity
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking Open Source Software: BlackBear: Advanced Simulation for Structural Integrity. This software is used in civil engineering to predict the behavior of materials in structures over time. BlackBear offers a comprehensive solution by simulating degradation phenomena and structural response under various loading conditions. It models the behavior of materials such as concrete and steel, providing a comprehensive view of structural response to thermal, mechanical, wind, and earthquake loadings. The software is applicable to optimizing the design and maintenance of buildings, bridges, and dams, conducting safety assessments, advancing material science, and managing nuclear power plants. Download now to transform your civil structure analysis and design approach.
    Open Source Software: TMAP8: Simplifying Diffusion-Reactive Transport Analysis for Fusion and Chemical Applications
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF Open Source Software: TMAP8: Simplifying Diffusion-Reactive Transport Analysis for Fusion and Chemical Applications. The Department of Energy is seeking an open source software solution called TMAP8 that simplifies diffusion-reactive transport analysis for fusion and chemical applications. TMAP8 is a pioneering MOOSE application designed to streamline and enhance the analysis of 0-1D scalar diffusion-reactive transport. It offers a unique custom syntax that simplifies the setup of diffusive-reactive and heat conduction models. TMAP8 can be used alongside multi-dimensional MOOSE applications for comprehensive multiscale modeling. It is suitable for analysts in fusion, chemical transport, and low-temperature plasma sectors. The software is intended to be used for low-temperature plasma analysis, fusion energy science simulations, chemical transport modeling in industrial applications, and systems-level analysis for chemical reactors and connecting piping. Download TMAP8 today to simplify your diffusion-reactive transport analysis and join a growing community of innovators shaping the future of scientific discovery.
    Open-Source Software: Empowering Energy Analysts with Stochastic Technoeconomic Assessments with HERON
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking Open-Source Software for empowering energy analysts with stochastic technoeconomic assessments using HERON. HERON is a modeling toolset and plugin for RAVEN that accelerates the stochastic technoeconomic assessment, enabling precise economic viability analysis of various grid-energy system configurations. This software addresses the increasing complexity in electricity demand and the integration of Integrated Energy Systems (IES), paving the way for economically optimal dispatch and robust system planning in the face of uncertainty. It offers advantages such as accelerated analysis, stochastic optimization, comprehensive economic metrics, user-friendly interface, and open-source collaboration. The primary audience for this software includes energy analysts and engineers, academic researchers and students, government agencies, utility companies, developers of renewable energy projects, and industry consultants. Download HERON today from GitHub for free and embrace the future of energy system planning.
    Open-Source Software: Transforming Integrated Energy Systems Analysis with FORCE
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking Open-Source Software for transforming Integrated Energy Systems Analysis with FORCE. FORCE is a unified, user-friendly platform that revolutionizes the analysis of integrated energy systems (IES). It offers comprehensive technoeconomic evaluations, from macro analysis to transient process modeling, to fuel smarter and sustainable energy solutions. This open-source software simplifies the complexity of IES analysis through automation and provides a unified interface, eliminating the need for ad-hoc solutions and reducing errors. FORCE is designed for technical experts, decision-makers in renewable energy and integrated energy systems, energy companies, national laboratories, academic institutions, policymakers, economic analysts, software developers, and data scientists in the energy sector. It is available for download at no cost from the product's GitHub page.
    Open Source Software: Optimizing Granular Material Handling with Advanced ABAQUS Add-Ons
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking Open Source Software for Optimizing Granular Material Handling with Advanced ABAQUS Add-Ons. This software is used to understand and control the flow of granular materials in various industries, such as biorefineries and equipment manufacturers. The software package includes four granular flow constitutive models tailored to accurately simulate granular flow dynamics. These models enhance accuracy, enable operational optimization, provide a competitive edge, and support sustainability in the bioenergy sector. The software is applicable for designing and optimizing material handling equipment and processing lines. Download now to unlock the full potential of granular material handling and processing equipment.
    Open Source Software: Unlocking Operational Efficiency in Nuclear Power Plants with DIAMOND
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking Open Source Software for unlocking operational efficiency in nuclear power plants with DIAMOND. The DIAMOND software is a pivotal solution in the complex operational environment of nuclear power plants. It integrates disparate data sources into a cohesive data warehouse, streamlining processes, fostering productivity, and enabling advanced analytics and machine learning applications. Traditionally, the nuclear industry has struggled with managing vast amounts of data scattered across various applications and systems. This fragmentation has led to inefficient manual data integration efforts, hindering cost savings and operational improvements. DIAMOND addresses this challenge by introducing an ontology-based data model specifically designed for the nuclear domain. Advantages of DIAMOND include significant cost savings, increased productivity, reduced errors, enhanced process control, and the ability to leverage advanced analytics and machine learning. The applications of DIAMOND include enhancing operational efficiency, reducing operational expenses, integrating data for analytics and decision support, and leveraging unified data for machine learning and AI-driven tools. Transform your nuclear power plant's data management landscape with DIAMOND and unlock the potential of your data. Visit the website to learn more and download DIAMOND today for operational excellence.
    Open-Source Software: Unlocking Economic Insights into Nuclear-Renewable Integrated Energy Systems with HYBRID
    Active
    Energy, Department Of
    Special Notice: ENERGY, DEPARTMENT OF is seeking Open-Source Software for Unlocking Economic Insights into Nuclear-Renewable Integrated Energy Systems with HYBRID. This software is used for the economic assessment of complex energy systems that integrate nuclear and renewable energy sources. It combines stochastic analysis, probabilistic optimization, and high-fidelity physical modeling to provide accurate economic performance insights. The software, called HYBRID, leverages the Idaho National Laboratory's RAVEN framework and Modelica language to generate stochastic time series, apply probabilistic analysis, and optimize N-R IES operations and planning. It offers a comprehensive toolset for capacity planning, dispatch optimization, economic analysis in academia and research, and policy and decision support. HYBRID is open source and available at no cost. Visit the product's GitHub page to download and learn more.