Licensing Opportunity: Tandem Pyrolysis – Evolved Gas – Gas Chromatography – Mass Spectrometry
ID: 2024-09-11-NType: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFORNL UT-BATTELLE LLC-DOE CONTRACTOROak Ridge, TN, 37831, USA
Timeline
    Description

    The Department of Energy is offering a licensing opportunity for a novel technology that enables tandem pyrolysis evolved gas analysis and gas chromatography-mass spectrometry (EGA-MS and GC-MS) from a single sample. This innovative approach addresses the limitations of traditional methods, which require separate experiments, by allowing both analyses to occur simultaneously, thereby reducing sample usage and experiment time significantly. The technology is particularly relevant for industries involved in polymer characterization, forensics, and environmental monitoring, as it enhances analytical efficiency and accuracy. Interested parties can learn more about this opportunity by contacting Andreana Leskovjan at leskovjanac@ornl.gov or by calling 865-341-0433.

    Point(s) of Contact
    Files
    No associated files provided.
    Similar Opportunities
    Licensing Opportunity: Apparatus and Method for Microwave Carbonization of Polymeric Materials for Carbon Fiber Production
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for an innovative apparatus and method for the microwave carbonization of polymeric materials aimed at carbon fiber production. This technology utilizes near-field electromagnetic treatment combined with a susceptor system in a resonant cavity, providing a more efficient alternative to conventional high-temperature carbonization processes that typically require large furnaces and significant energy input. The new method promises to save time and energy, reduce processing costs, and minimize the physical footprint of production facilities, making it particularly beneficial for the carbon fiber manufacturing industry. Interested parties can learn more about this technology by contacting Leslie Smith at smithlm@ornl.gov or by calling 865-341-0373.
    Licensing Opportunity: Chemical Upcycling of Poly(ethylene Terephthalate) Waste into Alpha-Omega-Dialkene Compounds
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a new technology that enables the chemical upcycling of poly(ethylene terephthalate) (PET) waste into valuable alpha-omega-dialkene compounds. This innovative process aims to convert discarded plastic waste into useful chemical compounds, thereby reducing environmental plastic accumulation and contributing to a sustainable, net-zero carbon society. The technology is particularly relevant for the chemical and plastic industries, providing a closed-loop method for synthesizing new materials from waste. Interested parties can learn more about this opportunity by contacting Andreana Leskovjan at leskovjanac@ornl.gov or by calling 865-341-0433.
    Licensing Opportunity: Cross-Facility Orchestration for Electrochemistry Experiments and Computations
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a technology designed to enhance electrochemistry experiments through cross-facility orchestration. This innovative solution involves the design and development of hardware and software that supports autonomous chemistry workflows, enabling real-time measurement transfer and analysis on high-performance computing systems, thereby addressing the limitations of manual testing. The technology is applicable across various fields, including isotope production, battery testing, and analytical chemistry, and aims to automate workflows, improve productivity, and minimize errors. For further information, interested parties can contact Leslie Smith at smithlm@ornl.gov or call 865-341-0373.
    TECHNOLOGY LICENSING OPPORTUNITY Electrochemical Revolution: Transforming Methane into Ethylene
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Electrochemical Revolution: Transforming Methane into Ethylene The Department of Energy is seeking a technology licensing opportunity for a modular electrocatalytic membrane reactor system that efficiently upgrades methane into ethylene. This technology addresses challenges faced by traditional methods of ethylene production from methane, such as low conversion rates and low selectivity, as well as safety risks. It is targeted towards the petrochemical and polymer industries that use natural gas or natural gas liquids as feedstock. The system offers higher efficiency, safety, modularity, and versatility, and has potential environmental benefits by reducing CO2 emissions. Applications include the petrochemical and polymer industries, small-scale natural gas reserve exploitation, and renewable hydrocarbon source conversion. The technology is currently at Technology Readiness Level 3 and has a provisional patent application. Interested parties can partner with Idaho National Laboratory for access to the technology. For more information, contact Andrew Rankin at td@inl.gov.
    Licensing Opportunity: Membrane Contactor for Energy-Efficient CO2 Capture from Point Sources with Physical Solvents
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a novel membrane contactor technology designed for energy-efficient CO2 capture from point sources using physical solvents. This innovative method utilizes deep eutectic solvents (DES) in a membrane contactor system, allowing for effective CO2 separation through a process that includes gas contact, physisorption, and solvent recirculation, all while minimizing energy consumption and operational challenges associated with traditional methods. The technology has significant applications across various industries, including power generation, chemical manufacturing, biogas upgrading, and natural gas processing, making it a vital solution in the fight against greenhouse gas emissions. Interested parties can reach out to Andreana Leskovjan at leskovjanac@ornl.gov or call 865-341-0433 for further information regarding this opportunity.
    Licensing Opportunity: Catalytic Regeneration of Amino Acid
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a novel technology aimed at improving the catalytic regeneration of amino acid-based solvents used in carbon dioxide capture. This innovative process utilizes a titanium dioxide catalyst to significantly reduce the energy and temperature requirements for solvent regeneration, addressing a major barrier to the commercialization of carbon capture technologies. The technology is particularly relevant for carbon capture plants, as it can decrease regeneration temperatures from the typical 120°C-140°C to below 100°C, while enhancing carbon dioxide removal rates by up to 128 percent and reducing overall costs by up to 50 percent. Interested parties can learn more about this opportunity by contacting Alex DeTrana at detranaag@ornl.gov or by phone at 865-341-0423.
    TECHNOLOGY LICENSING OPPORTUNITY Green Chemistry Breakthrough: Transforming CO2 into Olefins with Innovative Electrocatalysis
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY: Green Chemistry Breakthrough: Transforming CO2 into Olefins with Innovative Electrocatalysis The Department of Energy is seeking a technology licensing opportunity for a green chemistry breakthrough that efficiently converts carbon dioxide into olefins. This technology offers a sustainable solution for the chemical and polymer industries by reducing dependency on petrochemical feedstocks and addressing the need for decarbonization and sustainable methods in the chemical industry. The system utilizes a proton-conducting solid oxide electrochemical cell with perovskite-structured mixed metal oxide catalysts, operating at intermediate temperatures (300-500°C). It allows for flexibility in hydrogen sources and energy input, providing higher CO2 conversion and energy efficiency compared to traditional methods. The catalysts used in the system offer high activity and selectivity, making the process more efficient. This technology has the potential for modular implementation, making it appealing for on-site CO2 valorization at industrial plants. It can be used in the petrochemical and polymer industries, sustainable aviation fuel production, and industrial plants with CO2 emissions. Companies specializing in CO2 utilization technologies can also benefit from this technology. The technology is currently at Technology Readiness Level (TRL) 3, with analytical and experimental proof-of-concept demonstrated. It is protected by a provisional patent application. Interested parties can partner with Idaho National Laboratory (INL) for access to this pioneering technology and mutual growth. For more information and to discuss how your business can benefit from this technology licensing opportunity, please contact Andrew Rankin at td@inl.gov.
    Licensing Opportunity: Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a groundbreaking technology titled "Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope." This innovative method allows for the precise control and placement of atomic defects in materials, significantly enhancing applications in quantum photonics, magnetic storage, and catalysis, while overcoming limitations of traditional scanning tunneling microscopes. The technology is applicable to both 2D and 3D materials, enabling scalable atomic-scale manufacturing without damaging the material's atomic content. Interested parties can learn more about this opportunity by contacting Leslie Smith at smithlm@ornl.gov or by calling 865-341-0373.
    Licensing Opportunity: Method of Part Segmentation and Assembly for Fabrication of Complex Cylindrical Housings
    Active
    Energy, Department Of
    The Department of Energy, specifically ORNL UT-Battelle LLC, is offering a licensing opportunity for a novel method of part segmentation and assembly aimed at the fabrication of complex cylindrical housings. This technology addresses the challenges associated with manufacturing protective casings, particularly for aerospace applications, by enabling the machining of internal features in segments, which can then be joined and finished more efficiently than traditional methods. The approach not only enhances machining access and reduces production time but also eliminates the need for long lead times associated with special forgings, ultimately resulting in significant cost savings. Interested parties can learn more about this opportunity by contacting Alex DeTrana at detranaag@ornl.gov or by phone at 865-341-0423.
    Licensing Opportunity: A New Hybrid Explicit-Implicit Method to Accelerate Large-Scale Transient Thermal Stress Analysis
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a novel hybrid explicit-implicit method designed to accelerate large-scale transient thermal stress analysis. This innovative algorithm combines implicit and explicit simulation techniques to enhance the efficiency and accuracy of thermomechanical processes, particularly in additive manufacturing and welding applications. The technology significantly reduces computational time while maintaining high accuracy, making it suitable for complex processes characterized by multiple heating and cooling cycles. Interested parties can learn more about this opportunity by contacting Alex DeTrana at detranaag@ornl.gov or by phone at 865-341-0423.