Licensing Opportunity: Self-Repairing Oxygen Evolution Reaction Catalysts for Electrolysis
ID: 2024-09-11-TType: Special Notice
Overview

Buyer

ENERGY, DEPARTMENT OFENERGY, DEPARTMENT OFORNL UT-BATTELLE LLC-DOE CONTRACTOROak Ridge, TN, 37831, USA
Timeline
    Description

    The Department of Energy is offering a licensing opportunity for a self-repairing oxygen evolution reaction catalyst technology designed for electrolysis applications. This innovative technology utilizes stainless steel or manufactured alloys to create catalysts that can regenerate themselves, addressing common issues of degradation and enhancing long-term durability in electrolyzer systems. The self-repairing catalysts are particularly significant for industries involved in hydrogen production and carbon dioxide reduction, as they promise to reduce costs, improve energy efficiency, and minimize greenhouse gas emissions. Interested parties can learn more about this opportunity by contacting Eugene R. Cochran at cochraner@ornl.gov or by calling 865-576-2830.

    Point(s) of Contact
    Files
    No associated files provided.
    Similar Opportunities
    Licensing Opportunity: Catalysts for Oxygen and Hydrogen Evolution for the Electrolytic Hydrogen Production
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a novel catalyst technology aimed at enhancing electrolytic hydrogen production. This technology focuses on the development of a unique catalyst composition that significantly improves the electrochemical properties for oxygen evolution reactions, utilizing renewable energy sources such as solar, wind, or tidal energy. The invention is particularly relevant for industries involved in electrolysis, catalyst manufacturing, and membrane electrode assembly, providing a cleaner and more cost-effective method for hydrogen production. Interested parties can learn more about this technology by contacting Eugene R. Cochran at cochraner@ornl.gov or by phone at 865-576-2830.
    Licensing Opportunity: Scalable Nitrogen-Carbon Catalyst for CO2 Reduction Using Nitrogen Plasma (N2) Treatment
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a scalable nitrogen-carbon catalyst designed for carbon dioxide reduction using nitrogen plasma treatment. This innovative technology aims to enhance the efficiency of sodium-carbon dioxide (Na-CO2) batteries by overcoming the limitations of traditional carbon materials like Carbon Nanotubes (CNT) and graphene, which have shown significant inactivity in electrochemical CO2 reduction applications. The nitrogen plasma treatment process not only activates carbonaceous materials but also improves their catalytic activity, making this solution both cost-effective and scalable for broader applications in battery manufacturing and carbon dioxide reduction. Interested parties can learn more about this technology by contacting Andreana Leskovjan at leskovjanac@ornl.gov or by calling 865-341-0433.
    Licensing Opportunity: Catalytic Regeneration of Amino Acid
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a novel technology aimed at improving the catalytic regeneration of amino acid-based solvents used in carbon dioxide capture. This innovative process utilizes a titanium dioxide catalyst to significantly reduce the energy and temperature requirements for solvent regeneration, addressing a major barrier to the commercialization of carbon capture technologies. The technology is particularly relevant for carbon capture plants, as it can decrease regeneration temperatures from the typical 120°C-140°C to below 100°C, while enhancing carbon dioxide removal rates by up to 128 percent and reducing overall costs by up to 50 percent. Interested parties can learn more about this opportunity by contacting Alex DeTrana at detranaag@ornl.gov or by phone at 865-341-0423.
    TECHNOLOGY LICENSING OPPORTUNITY Green Chemistry Breakthrough: Transforming CO2 into Olefins with Innovative Electrocatalysis
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY: Green Chemistry Breakthrough: Transforming CO2 into Olefins with Innovative Electrocatalysis The Department of Energy is seeking a technology licensing opportunity for a green chemistry breakthrough that efficiently converts carbon dioxide into olefins. This technology offers a sustainable solution for the chemical and polymer industries by reducing dependency on petrochemical feedstocks and addressing the need for decarbonization and sustainable methods in the chemical industry. The system utilizes a proton-conducting solid oxide electrochemical cell with perovskite-structured mixed metal oxide catalysts, operating at intermediate temperatures (300-500°C). It allows for flexibility in hydrogen sources and energy input, providing higher CO2 conversion and energy efficiency compared to traditional methods. The catalysts used in the system offer high activity and selectivity, making the process more efficient. This technology has the potential for modular implementation, making it appealing for on-site CO2 valorization at industrial plants. It can be used in the petrochemical and polymer industries, sustainable aviation fuel production, and industrial plants with CO2 emissions. Companies specializing in CO2 utilization technologies can also benefit from this technology. The technology is currently at Technology Readiness Level (TRL) 3, with analytical and experimental proof-of-concept demonstrated. It is protected by a provisional patent application. Interested parties can partner with Idaho National Laboratory (INL) for access to this pioneering technology and mutual growth. For more information and to discuss how your business can benefit from this technology licensing opportunity, please contact Andrew Rankin at td@inl.gov.
    Licensing Opportunity: Cross-Facility Orchestration for Electrochemistry Experiments and Computations
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a technology designed to enhance electrochemistry experiments through cross-facility orchestration. This innovative solution involves the design and development of hardware and software that supports autonomous chemistry workflows, enabling real-time measurement transfer and analysis on high-performance computing systems, thereby addressing the limitations of manual testing. The technology is applicable across various fields, including isotope production, battery testing, and analytical chemistry, and aims to automate workflows, improve productivity, and minimize errors. For further information, interested parties can contact Leslie Smith at smithlm@ornl.gov or call 865-341-0373.
    TECHNOLOGY LICENSING OPPORTUNITY Electrochemical Revolution: Transforming Methane into Ethylene
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF TECHNOLOGY LICENSING OPPORTUNITY Electrochemical Revolution: Transforming Methane into Ethylene The Department of Energy is seeking a technology licensing opportunity for a modular electrocatalytic membrane reactor system that efficiently upgrades methane into ethylene. This technology addresses challenges faced by traditional methods of ethylene production from methane, such as low conversion rates and low selectivity, as well as safety risks. It is targeted towards the petrochemical and polymer industries that use natural gas or natural gas liquids as feedstock. The system offers higher efficiency, safety, modularity, and versatility, and has potential environmental benefits by reducing CO2 emissions. Applications include the petrochemical and polymer industries, small-scale natural gas reserve exploitation, and renewable hydrocarbon source conversion. The technology is currently at Technology Readiness Level 3 and has a provisional patent application. Interested parties can partner with Idaho National Laboratory for access to the technology. For more information, contact Andrew Rankin at td@inl.gov.
    Licensing Opportunity: CO2 Capture from Seawater by a Novel Contactor
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for an innovative technology designed for carbon dioxide capture from seawater, developed by ORNL UT-Battelle LLC. This technology utilizes a polymer membrane contactor with selective ligands to efficiently capture CO2 without the high energy demands associated with traditional methods, making it a scalable and environmentally sustainable solution. As the ocean's capacity to absorb CO2 diminishes, this technology is crucial for maintaining its absorptive properties and protecting marine ecosystems. Interested parties can contact Andreana Leskovjan at leskovjanac@ornl.gov or call 865-341-0433 for more information on this opportunity.
    Licensing Opportunity: Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope
    Active
    Energy, Department Of
    The Department of Energy, through ORNL UT-Battelle LLC, is offering a licensing opportunity for a groundbreaking technology titled "Deterministic Atom Steering for Repeated Identical Defect Generation in the Scanning Transmission Electron Microscope." This innovative method allows for the precise control and placement of atomic defects in materials, significantly enhancing applications in quantum photonics, magnetic storage, and catalysis, while overcoming limitations of traditional scanning tunneling microscopes. The technology is applicable to both 2D and 3D materials, enabling scalable atomic-scale manufacturing without damaging the material's atomic content. Interested parties can learn more about this opportunity by contacting Leslie Smith at smithlm@ornl.gov or by calling 865-341-0373.
    Licensing Opportunity: High Dielectric Constant CCTO/PI Composites Enabled by Dispersants
    Active
    Energy, Department Of
    The Department of Energy is offering a licensing opportunity for a novel ceramic-polymer composite material designed for capacitors, specifically targeting the evolving demands of electric vehicles and power electronics. This innovative technology combines the advantageous properties of ceramic and polymer materials to create a high dielectric constant composite that operates effectively at elevated temperatures (≥200 degrees Celsius) while maintaining high dielectric strength and reduced volume. The resulting capacitors are expected to outperform existing technologies, making them suitable for various applications in automotive manufacturing, battery production, and high-power electronics. Interested parties can learn more about this technology by contacting Alex DeTrana at detranaag@ornl.gov or by calling 865-341-0423.
    INL Innovation Spotlight Efficient Protonic Ceramic Power: Dual-Mode Hydrogen and Electricity Generation
    Active
    Energy, Department Of
    Special Notice ENERGY, DEPARTMENT OF INL Innovation Spotlight Efficient Protonic Ceramic Power: Dual-Mode Hydrogen and Electricity Generation The Department of Energy is seeking innovative solutions for efficient and sustainable energy storage and conversion. The INL Innovation Spotlight focuses on the development of a reversible solid oxide cell technology that enables dual-mode hydrogen production and electricity generation. This breakthrough technology utilizes a perovskite material called PNC oxide, which operates effectively at lower temperatures and offers enhanced efficiency and durability. It has versatile applications in renewable energy storage systems, hydrogen production facilities, power generation companies, environmental sensing devices, and industrial gas processing. This technology aligns with global sustainability goals and offers a carbon-neutral energy cycle. Interested businesses can engage with INL Tech Partnerships to explore licensing opportunities and receive support for their growth. For more information, please contact Andrew Rankin at td@inl.gov.