Precision Stabilization of Large, Wide Field of View Imaging Sensors
ID: N241-027Type: BOTH
Overview

Topic

Precision Stabilization of Large, Wide Field of View Imaging Sensors

Agency

Department of DefenseN/A

Program

Type: SBIRPhase: BOTHYear: 2024
Timeline
    Description

    The Department of Defense (DOD) is seeking proposals for the topic of "Precision Stabilization of Large, Wide Field of View Imaging Sensors" as part of the SBIR 24.1 BAA program. The Navy branch is specifically interested in this technology. The objective is to develop a capability to accurately stabilize high-performance, large, wide field of view (WFOV) imaging sensors during operations in adverse maritime environments. WFOV cameras are used for navigation, situational awareness, and panoramic applications, but they require stabilization to compensate for ship motion and adverse sea states. The Navy is looking for a mechanical solution that can stabilize the sensor package, which covers a 135° sector of the vessel, for ship motion in roll and pitch displacement, velocity, and acceleration. The desired stabilization accuracy is 25 micro-radians in elevation. The proposed solution should be able to demonstrate feasibility in Phase I and deliver a prototype sensor stabilization system in Phase II. The technology resulting from this effort is anticipated to have broad military, scientific, and commercial applications. The solicitation is closed, and more details can be found on the grants.gov website.

    Files
    No associated files provided.
    Similar Opportunities
    DOD SBIR 24.4 Annual - Autonomous Optical Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic of "Autonomous Optical Sensors" as part of their SBIR program. The objective of this project is to develop a portable optical sensor that can capture high-quality real-time imagery data during missile tests. The sensor will be positioned near a missile launcher or target to analyze the terminal phase of the flight. The sensor will incorporate high-speed imaging cameras with advanced artificial intelligence and machine learning capabilities, allowing it to calibrate and manage itself and operate autonomously for an extended period. The sensor will wirelessly receive setup and calibration data from a centralized command center. In Phase I, the awardee will research and define an integrated configuration of the Autonomous Optical Sensor (AOS) that includes various types of optical sensors and an AI framework. Phase II will involve creating a prototype of the AOS based on the Phase I analysis, refining the integrated system design, and conducting functional testing in an operational context. The potential applications of this technology include collecting real-time imagery for air traffic management at airports or surveillance of sensitive areas. It can help track flights, assist in airspace coordination, and alert operators of potential safety or security concerns. The project is currently open for proposals, with a closing date of March 31, 2025. More information can be found on the DOD SBIR website.
    DOD SBIR 24.4 Annual - Lightweight Longwave Bolometer Sensor Components
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Lightweight Longwave Bolometer Sensor Components" as part of the SBIR program. The objective of this topic is to develop components that enable low size, weight, and power (SWAP) thermal bolometer-type longwave thermal sensor payloads. These components should have equal or better performance than current commercial offerings while driving down SWAP. The components of interest include lens, focal plane, and readout and processing embedded hardware. The components should be ready for integration into a camera module by the end of Phase II. Thermal longwave infrared (LWIR) capabilities are crucial for many Army applications, especially for small Unmanned Aircraft Systems (UAS). However, the size, power, and weight constraints often limit the performance of these sensors. This topic aims to develop components that reduce the weight of thermal payloads while increasing their capabilities and keeping unit costs low. The project will have a Phase I and Phase II, with Phase I proposals accepting a cost of up to $250,000 for a 6-month period of performance. During Phase I, firms should design a proposed component with stakeholder input, analyze the SWAP-C impact of the component, and discuss how it will support the objective sensor payload. Phase II will involve completing the component design, fabricating, testing, and characterizing the component for integration into a lightweight sensor payload. Firms will also refine the design, define relevant interfaces, and lay out a high-level plan for integration. The potential applications of this research include smartphone camera augmentation, UAV camera augmentation, home security systems, and climate tech development. The project references academic research on bolometer manufacturing methods and the efficacy of leveraging colloidal quantum dots (QDs) for IR light sensing. Military contractors have also contributed to the research in the LWIR sensor and bolometer manufacturing spaces. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation notice on grants.gov or the DOD SBIR/STTR Opportunities page. The open date for proposals is October 3, 2023, and the close date is March 31, 2025.
    DOD STTR 24.D Annual - Window-glass Telescope for Highly-compensated Ubiquitous Sensing (WITH US)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the Small Business Innovation Research (SBIR) Phase I program. The specific topic of the solicitation is the "Window-glass Telescope for Highly-compensated Ubiquitous Sensing (WITH US)". The objective of this program is to design, develop, and study a large collecting area telescope system that can detect faint objects in space using window(s) already installed on commercial office buildings. The goal is to utilize the massive quantity of in-situ commercial building windows as a tool for sensing faint objects or as a relay optic for sending light to a remote object. The solicitation seeks proposals to design a machine-learning or other system to characterize the surface shape of window glass, design a computational imaging system for hardware or numerical corrections, and design the physical realization of the telescope system. The project duration for Phase I is 12 months, and successful proposals should include modeling and simulation to achieve the goals. Phase II will further develop modeling methods and validate capabilities through hardware design, construction, and testing of prototype subsystems. The Phase II base effort should include a scalability study and a small-scale laboratory demonstration. The Phase II option effort should include a task dedicated to determining the feasibility of integrating components into a fieldable system capable of performing astronomical measurements. The ultimate goal is to commercialize the concept and apply it to various imaging applications, including ground-based Space Domain Awareness (SDA) and satellite surveillance.
    DOD SBIR 24.4 Annual - Precision Control Lens Eye Tracking Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of precision contact lens eye tracking sensors for Extended Reality (XR) interaction, training optimization, and cognitive monitoring. The objective is to enhance command and control capabilities in XR environments, optimize training, and enable real-time adaptive systems. Current eye tracking technologies lack the necessary precision and ruggedness for military operations. The use of contact lens-based eye tracking would allow for operational integration into various dynamic scenarios, including manned and unmanned air operations and ground vehicle systems. The proposed project includes feasibility studies, the development of a working prototype, and human factors feasibility studies. The technology has potential applications in academic research, health monitoring, and various market applications. The project is open for proposals until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Miniaturization of Hyperspectral Sensors for UAS Applications
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Miniaturization of Hyperspectral Sensors for UAS Applications" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop a compact, passive, day/night capable hyperspectral sensor that meets Size, Weight, and Power (SWaP) requirements for integration into ongoing modernization programs. The sensor should result in cost savings and reductions in weight, power, and volume without sacrificing capability. The sensor payload will be developed for use on smaller Unmanned Aerial Systems (UASs). Historically, airborne hyperspectral imaging (HSI) systems have been limited to larger aircraft due to heavy and complex optical components, high power consumption, and large ancillary hardware. This limits accessibility and availability. The solicitation is accepting Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for a 24-month period of performance. Proposers interested in submitting a DP2 proposal must provide documentation to substantiate the scientific and technical merit and feasibility equivalent to a Phase I project. During Phase II, firms should complete the sensor design, fabricate and test the component, integrate it into a gimbal for final integration onto a Class II or smaller UAS platform, refine the design as necessary, and validate sensor payload performance in a government-run laboratory. They should also define relevant interfaces for integration and lay out a high-level plan for how the component could be integrated into a UAS platform. In Phase III, the sensor/gimbal payload should be integrated into a prototype system for field collection. The sensor should be deployed on at least one test event to observe performance and generate quantitative/qualitative sensor performance data. The topic references relevant research papers on hyperspectral imaging systems. The keywords for this topic are Hyperspectral, VNIR, SWIR, and LWIR. For more information and to submit proposals, visit the DOD SBIR 24.4 Annual solicitation page on grants.gov: link.
    DOD SBIR 24.4 Annual - Low-cost Longwave Bolometer Camera Fabrication Techniques
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Low-cost Longwave Bolometer Camera Fabrication Techniques" as part of their SBIR 24.4 Annual solicitation. The objective of this topic is to develop novel technologies and fabrication techniques to reduce the cost of sensor payloads based on resistive microbolometer technology. The focus is on reducing the unit cost of the focal plane array and supporting a low-cost sensor. The solutions should be ready to transition into a camera module development effort by the end of Phase II. The solicitation emphasizes the importance of thermal longwave infrared (LWIR) capabilities in various Army applications and the need for a thermal sensor payload with high-definition array and dramatically reduced unit price. The solutions can involve novel manufacturing techniques, new materials systems, innovative component or module designs, or other approaches. Direct to Phase II contracts will focus on demonstrating enabling developments, and Phase II sequential efforts will deliver a prototype payload meeting the specified requirements for evaluation by Army Unmanned Aircraft Systems (UAS) or other programs. Phase I of the solicitation is only accepting Direct to Phase II (DP2) proposals with a cost of up to $2,000,000 for an 18-month period of performance. DP2 proposals are highly encouraged if they meet the requirements. Proposals should demonstrate the estimated cost reduction compared to products made with current fabrication techniques and discuss the impact on size, weight, and power of a complete camera module. Initial ideas on potential paths for integration into a production camera module should also be discussed. Phase II involves designing and fabricating a prototype device that demonstrates the proposed solution to reduce thermal sensor payload unit cost. The impact of the solution on the unit price of a final sensor payload and its incorporation into such a payload should be discussed. Relevant interfaces should be defined and documented, and potential partnerships with integrators or other companies for follow-on efforts should be considered. In Phase III, the solicitation highlights the potential dual-use applications of leveraging bolometer manufacturing methods for low-cost long wave infrared (LWIR) sensors. These applications include smartphone camera augmentation, UAV camera augmentation (specifically via the Office of Naval Research), home security systems, and climate tech via quantum dot (QD) development. Overall, this solicitation seeks innovative solutions to reduce the cost of thermal sensor payloads based on resistive microbolometer technology, with potential applications in various military and commercial sectors.
    DOD SBIR 24.4 Annual - Digital Projection Close Quarters Sight (DP-CQS)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Digital Projection Close Quarters Sight (DP-CQS)" as part of their SBIR 24.4 Annual program. The objective of this topic is to develop applied research for a compact, close-quarters sight that utilizes a digital screen projected onto a transparent surface for the user to look/aim through. The technology should provide multiple user-selectable and user-configurable ballistic reticles, eliminate mechanical adjustors, and improve system stability under thermal and mechanical shock. The feasibility study should explore options for a 1x direct view optic with at least 3 different digital reticle configurations, low Size Weight and Power (SWaP), and a 72-hour continuous battery run time. The DP-CQS should also communicate with external devices for range/ballistic data and user-configured reticles. The Phase I of the project involves conducting a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications for this technology include military weapon systems and the competitive shooting market. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Precision Control Lens Eye Tracking Sensors
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the development of precision contact lens eye tracking sensors for Extended Reality (XR) interaction, training optimization, and cognitive monitoring. The objective is to enhance command and control capabilities in XR environments and enable real-time adaptive systems. Current eye tracking technologies lack the necessary precision and ruggedness for military operations. The proposed contact lens-based eye tracking sensors would allow for operational integration into various dynamic scenarios, including manned and unmanned air operations and ground vehicle systems. The project will involve feasibility studies, the development of a working prototype, and human factors feasibility studies. The technology has potential applications in academic research, health monitoring, and various market applications. The deadline for proposals is March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Digital Projection Close Quarters Sight (DP-CQS)
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the Digital Projection Close Quarters Sight (DP-CQS) as part of the SBIR 24.4 Annual program. The objective of this topic is to develop applied research for a compact, close-quarters sight that utilizes a digital screen projected onto a transparent surface for the user to look/aim through. The DP-CQS should have multiple user-selectable and user-configurable ballistic reticles, eliminate mechanical adjustors, and improve system stability under thermal and mechanical shock. The feasibility study should consider technologies to eliminate light scattering and minimize color shift. The DP-CQS should have a low Size Weight and Power (SWaP) with a 72-hour continuous battery run time. The Phase I of the project involves conducting a feasibility study, while Phase II focuses on developing and demonstrating a prototype system. The potential applications of this technology include military weapon systems and the competitive shooting market. The solicitation is open until March 31, 2025. For more information, visit the solicitation link.
    DOD SBIR 24.4 Annual - Advanced Miniature Mission Processor for Hyperspectral Applications
    Active
    Department of Defense
    The Department of Defense (DOD) is seeking proposals for the topic "Advanced Miniature Mission Processor for Hyperspectral Applications" as part of their SBIR 24.4 Annual solicitation. The research focuses on developing a low-size, weight, and power (SWaP) high-performance computer for an Unmanned Aircraft Systems (UAS)-integrated hyperspectral imaging (HSI) camera. The objective is to meet the necessary SWaP requirements for integration into ongoing modernization programs. The mission processor will aggregate multiple core payload operation functions and should be compliant with current Sensor Open System Architecture (SOSA) Small Form Factor (SFF) standards. The project duration is 24 months, and the funding for Phase II proposals is up to $2,000,000. The ultimate goal is to integrate the mission processor with a sensor/gimbal into a prototype system for field collection and observe its performance. Relevant references include research papers on hyperspectral imaging and signal processing approaches. Keywords for this topic include hyperspectral, real-time processor, near-real-time processor, and mission processor. For more information and to submit a proposal, visit the DOD SBIR website.